Abstract:
A spark gap including a capacitive energy store is provided. The spark gap is fed via a multiplicity of capacitors arranged in a form of a ring, wherein the capacitors are electrically connected to the anode and the cathode via ring-shaped and conical or funnel-shaped conductors. As a result, sudden changes in impedance can be avoided. At the same time, it is possible to realize as large a cross-sectional area of the conductor as possible within a very small space. Therefore, the spark gap has a switching response with a high rate of rise of the voltage pulse as soon as the spark gaps flash over. This results in an easily predictable switching response of the spark gap. The spark gap can be used, for example, to generate pulses of monochromatic X-ray radiation.
Abstract:
A structure to generate x-rays has a plurality of stationary and individually electrically addressable field emissive electron sources with a substrate composed of a field emissive material, such as carbon nanotubes. Electrically switching the field emissive electron sources at a predetermined frequency field emits electrons in a programmable sequence toward an incidence point on a target. The generated x-rays correspond in frequency and in position to that of the field emissive electron source. The large-area target and array or matrix of emitters can image objects from different positions and/or angles without moving the object or the structure and can produce a three dimensional image. The x-ray system is suitable for a variety of applications including industrial inspection/quality control, analytical instrumentation, security systems such as airport security inspection systems, and medical imaging, such as computed tomography.
Abstract:
A system for calibrating the time axis of an X-ray streak tube comprising a light source for generating a train of light pulses and an X-ray tube including a photocathode for receiving the light pulses. Upon receiving the light pulses, the X-ray tube generates a train of X-rays which excite the photocathode of the streak tube causing it to emit an electron beam. The electron beam is scanned by a sweep voltage synchronized with the light pulses and applied across deflection electrodes in the streak tube. The deflected beam impinges on the phosphor screen of the streak tube where the time interval of the streak image is measured.
Abstract:
Electrode structure for controlling flow of electrons from a cathode to an anode, characterized by the absence of electrodes in the flow path whereby electron flow is substantially unimpeded by physical structure and proceeds with high transmission efficiency. The structure is such as to establish an electron accelerating field and associated flow path between cathode and anode which bulges outwardly about an interposed control electrode and is thus not physically intercepted by same. By virtue of the high efficiency of electron transmission, the electrode structure may be advantageously incorporated in an Xray tube to provide X-ray pulses of increased intensity. In addition, the transmission characteristic in conjunction with the capability of the bulging field to enable the use of relatively small control voltages to govern electron flow render the electrode structure particularly well suited to the attainment of a high amplification factor in a high power amplifier tube for voltage regulation or switching applications.
Abstract:
A radiotherapy system includes an X-ray target configured to convert an incident electron beam into a therapeutic X-ray beam, a purging magnet configured to redirect unwanted particles emitted from the X-ray target away from the therapeutic X-ray beam, and a particle collector configured to absorb the unwanted particles subsequent to redirection by the purging magnet. The particle collector may be configured to dissipate at least 50% of the energy of the incident electron beam.