Abstract:
A swage mount is manufactured for attaching a head suspension assembly to a head actuator arm for a hard disk drive. A conductive material is deposited on a predetermined part of the swage mount. A coating material is deposited on the swage mount including the predetermined part. Heat is applied to the swage mount, forming a mixture of the conductive material and the coating material. The mixture is conductive and supports a reliable connection between the swage mount and other disk drive components. Furthermore, the mixture enhances cleanliness by reducing particles shed from the swage mount. The conductive material is preferably gold, and the coating material is preferably nickel-based.
Abstract:
Various embodiments concern an electrical interconnect of a head suspension. The electrical interconnect can comprise a spring metal layer and a dielectric layer having an aperture with a portion of the spring metal layer being exposed through the dielectric layer within the aperture. The electrical interconnect can further comprise a trace layer disposed on the dielectric layer and extending into the aperture to connect with the spring metal layer. Part of the spring metal layer within the aperture may not be covered by the trace layer. The exposure of the spring metal layer through the aperture can be due to the width of the trace layer being less than the width of the aperture and/or the exposure can be due to expected misregistration. A polymer covercoat can be applied over the aperture to protect the trace layer from corrosion.
Abstract:
A suspension board with circuit for mounting a slider unit including an electron device, the electron device being mounted so as to form, when projected in the thickness direction with respect to the slider provided with a magnetic head, an overlapping portion that overlaps with the slider, and a protruding portion that protrudes from the slider. The suspension board with circuit is formed with a first opening penetrating in the thickness direction and accommodates the overlapping portion, and a second opening that communicates with the first opening and accommodates the protruding portion.
Abstract:
An optical disk apparatus includes a main chassis and a sub-chassis provided on a drawer, and has a skew adjusting mechanism of the main chassis and the sub-chassis which is skew-adjusted with reference to a rotational axis in tangential direction XT, which is parallel to a spot trajectory L of an optical pickup and located in the vicinity of the spot trajectory L, and a rotational axis in radial direction XR perpendicular to the rotational axis in tangential direction XT. This enables the skew adjustment in which a change in height of the optical pickup is small during the adjustment and distortion is small.
Abstract:
A pivot bearing cartridge for use in a head stack assembly. The cartridge includes a pivot shaft including a central axis, a shaft body and a shaft distal end. The cartridge includes a pivot sleeve disposed about the pivot shaft. The pivot sleeve includes a pivot sleeve annular body and a pivot sleeve closed end disposed adjacent the shaft distal end. The cartridge includes a ball bearing set disposed between and in mechanical communication with the shaft body and the pivot sleeve annular body. The cartridge includes a shaft magnet element attached to the shaft distal end adjacent the pivot sleeve closed end. The shaft magnet element is sized and configured to apply a magnetic force to the pivot sleeve in a direction along the central axis for pre-loading the ball bearing set.
Abstract:
The invention relates to a method of manufacturing a scanning device comprising a support (9) for an information carrier (1), a motor (13) for rotating the support about an axis of rotation (11), a scanning unit (15) for scanning the information carrier, and a displacement device (19) for displacing the scanning unit relatively to the information carrier. According to this method, the motor and the displacement unit are each provided on a separate frame (29, 31), and the scanning device is provided with a pretensioning means (39) and an adjusting device (33, 35, 37). In at least one adjustment position, the frames are held at a mutual distance under the influence of a pretensioning force exerted by said pretensioning means, said distance being adjusted by means of said adjusting device. The adjusting device is used to correct an angular deviation present between a laser beam path (27) of the scanning unit and a normal to an information surface (7) of the information carrier as a result of manufacturing tolerances. According to the method in accordance with the invention, an adhesive (73, 75) is applied between the two frames adjoining the adjusting device, and the distance between the two frames, as adjusted by means of the adjusting device, is secured by curing the adhesive present between the two frames. In this manner, unwanted mutual displacements of the two frames, which could occur as a result of imbalance forces caused by the information carrier rotating at relatively high speeds, are prevented as much as possible.
Abstract:
A head suspension or head suspension component that includes a spring metal support layer, an insulating layer and a conductive layer, into which three dimensional heat dissipation structures have been integrally formed to dissipate heat from the head suspension, especially in an area adjacent to an integrated circuit mounted on the head suspension. The heat dissipation structures may include a plurality of heat fins formed into or onto one or more conductive traces of the conductive layer, or may include a plurality of projections or indentations formed into or onto conductive traces. Use of a partial etching technique allows for simultaneous etching of both the traces and the heat fins within the traces, thereby decreasing production costs and increasing head suspension reliability. Heat fins may also be formed into the support layer in a region adjacent to the conductive layer heat fins, if desired in order to dissipate even more heat from the region.
Abstract:
A flexible cable assembly (FCA) has a flexible cable, first and second brackets attached to the flexible cable, and a band for holding the first and second brackets while the flexible cable is folded back and the first and second brackets overlap. The band is detachably mounted to the first and second brackets to facilitate efficient manufacturing and disassembly methods. The FCA may be implemented at various manufacturing stages including the head suspension assembly (HSA) or the entire hard disk drive (HDD) assembly.
Abstract:
A swaging device for connecting suspension assemblies to an actuator block of a disc drive. The swaging device includes an expandable member which is designed for insertion into channels of tubular stakes coupled to suspension assemblies to swage the tubular stakes relative to a hole of an actuator arm. The expandable member is expandable between an insertion dimension and a swaging dimension. In the insertion dimension, the expandable member is sized for insertion into the channels of the tubular stakes. The expandable member is inserted into stake channels and is expanded to the swaging dimension to impart a swaging force to connect tubular stakes to actuator arms.
Abstract:
A magnetic head includes a metal plate having a conductive pattern, and a slider having a head element and a connecting terminal electrically connected to the head element, and fixed on the metal plate. The connecting terminal and the conductive pattern are connected by ultrasonically bonding a ball bump thereto. The ball bump has on its surface a projecting portion extending in the direction that links the connecting terminal and the conductive pattern. A bonding capillary for use in the ultrasonic bonding includes a tip section having a through hole for passing a wire therethrough. The tip section also has a recessed portion centered on the through hole, and a groove that reaches the outer surface of the tip section across the center of the recessed portion.