Abstract:
A stopword detection component detects stopwords (also stop-phrases) in search queries input to keyword-based information retrieval systems. Potential stopwords are initially identified by comparing the terms in the search query to a list of known stopwords. Context data is then retrieved based on the search query and the identified stopwords. In one implementation, the context data includes documents retrieved from a document index. In another implementation, the context data includes categories relevant to the search query. Sets of retrieved context data are compared to one another to determine if they are substantially similar. If the sets of context data are substantially similar, this fact may be used to infer that the removal of the potential stopword(s) is not material to the search. If the sets of context data are not substantially similar, the potential stopword can be considered material to the search and should not be removed from the query.
Abstract:
Disclosed is a system for rectifying a typographical error in a text file. The system includes a network generating module for generating a linguistic network of a plurality of words present in the text file. A computation module configured to compute the similarity between each pair of words based on a set of parameters. A weight assignment module for assigning a weight to the edge present between the each pair of words based the set of parameters. A categorization module configured to categorize one or more words present in the linguistic network in a category. A word identification module configured to identify a reference word from the category. A word substitution module configured to substitute each word of the category deemed as erroneous with corresponding reference word for rectifying the typographical error.
Abstract:
Techniques for managing big data include retrieval using per-subject dictionaries having multiple levels of sub-classification hierarchy within the subject. Entries may include subject-determining-power (SDP) scores that provide an indication of the descriptive power of the entry term with respect to the subject of the dictionary containing the term. The same term may have entries in multiple dictionaries with different SDP scores in each of the dictionaries. A retrieval request for one or more documents containing search terms descriptive of the one or more documents can be processed by identifying a set of candidate documents tagged with subjects, i.e., identifiers of per-subject dictionaries having entries corresponding to a search term, then using affinity values to adjust the aggregate score for the terms in the dictionaries. Documents are then selected for best match to the subject based on the adjusted scores. Alternatively, the adjustment may be performed after selecting the documents by re-ordering them according to adjusted scores.
Abstract:
A computer implemented method and system for spell correcting terms within a string of terms that a computer system receives from a computer readable data string representative of a user search query.
Abstract:
Techniques for managing big data include retrieval using per-subject dictionaries having multiple levels of sub-classification hierarchy within the subject. Entries may include subject-determining-power (SDP) scores that provide an indication of the descriptive power of the entry term with respect to the subject of the dictionary containing the term. The same term may have entries in multiple dictionaries with different SDP scores in each of the dictionaries. A retrieval request for one or more documents containing search terms descriptive of the one or more documents can be processed by identifying a set of candidate documents tagged with subjects, i.e., identifiers of per-subject dictionaries having entries corresponding to a search term, then using affinity values to adjust the aggregate score for the terms in the dictionaries. Documents are then selected for best match to the subject based on the adjusted scores. Alternatively, the adjustment may be performed after selecting the documents by re-ordering them according to adjusted scores.
Abstract:
A stopword detection component detects stopwords (also stop-phrases) in search queries input to keyword-based information retrieval systems. Potential stopwords are initially identified by comparing the terms in the search query to a list of known stopwords. Context data is then retrieved based on the search query and the identified stopwords. In one implementation, the context data includes documents retrieved from a document index. In another implementation, the context data includes categories relevant to the search query. Sets of retrieved context data are compared to one another to determine if they are substantially similar. If the sets of context data are substantially similar, this fact may be used to infer that the removal of the potential stopword(s) is not material to the search. If the sets of context data are not substantially similar, the potential stopword can be considered material to the search and should not be removed from the query.
Abstract:
A system and method for natural language processing of queries are provided. A lexicon includes text elements that are recognized as being a proper noun when capitalized. A natural language query includes a sequence of text elements including words. The query is processed. The processing includes a preprocessing step, in which part of speech features are assigned to the text elements in the query. This includes identifying, from a lexicon, a text element in the query which starts with a lowercase letter and assigning recapitalization information to the text element in the query, based on the lexicon. This information includes a part of speech feature of the capitalized form of the text element. Then parts of speech for the text elements in the query are disambiguated, which includes applying rules for recapitalizing text elements based on the recapitalization information.
Abstract:
To retrieve a sequence of associated events in log data, a request expression is parsed to retrieve types of dependencies between events which are searched, and the constraints (e.g., keywords) which characterize each event. Based on the parsing results, query components can be formed, expressing the constraints for individual events and interrelations (e.g., time spans) between events. A resultant span query comprising the query components can then be run against an index of events, which encodes a mutual location of associated events in storage.
Abstract:
Information retrieval systems face challenging problems with delivering highly relevant and highly inclusive search results in response to a user's query. Contextual personalized information retrieval uses a set of integrated methodologies that can combine automatic concept extraction/matching from text, a powerful fuzzy search engine, and a collaborative user preference learning engine to provide accurate and personalized search results. The system can include constructing a search query to execute a search of a database. The system can parse an input query from a user conducting the search of the database into sub-strings, and can match the sub-strings to concepts in a semantic concept network of a knowledge base. The system can further map the matched concepts to criteria and criteria values that specify a set of constraints on and scoring parameters for the matched concepts.
Abstract:
A stopword detection component detects stopwords (also stop-phrases) in search queries input to keyword-based information retrieval systems. Potential stopwords are initially identified by comparing the terms in the search query to a list of known stopwords. Context data is then retrieved based on the search query and the identified stopwords. In one implementation, the context data includes documents retrieved from a document index. In another implementation, the context data includes categories relevant to the search query. Sets of retrieved context data are compared to one another to determine if they are substantially similar. If the sets of context data are substantially similar, this fact may be used to infer that the removal of the potential stopword(s) is not material to the search. If the sets of context data are not substantially similar, the potential stopword can be considered material to the search and should not be removed from the query.