DOCUMENT RETRIEVAL USING INTERNAL DICTIONARY-HIERARCHIES TO ADJUST PER-SUBJECT MATCH RESULTS
    5.
    发明申请
    DOCUMENT RETRIEVAL USING INTERNAL DICTIONARY-HIERARCHIES TO ADJUST PER-SUBJECT MATCH RESULTS 有权
    使用内部词典分类的文档检索来调整每个对象的匹配结果

    公开(公告)号:US20150134666A1

    公开(公告)日:2015-05-14

    申请号:US14077305

    申请日:2013-11-12

    Abstract: Techniques for managing big data include retrieval using per-subject dictionaries having multiple levels of sub-classification hierarchy within the subject. Entries may include subject-determining-power (SDP) scores that provide an indication of the descriptive power of the entry term with respect to the subject of the dictionary containing the term. The same term may have entries in multiple dictionaries with different SDP scores in each of the dictionaries. A retrieval request for one or more documents containing search terms descriptive of the one or more documents can be processed by identifying a set of candidate documents tagged with subjects, i.e., identifiers of per-subject dictionaries having entries corresponding to a search term, then using affinity values to adjust the aggregate score for the terms in the dictionaries. Documents are then selected for best match to the subject based on the adjusted scores. Alternatively, the adjustment may be performed after selecting the documents by re-ordering them according to adjusted scores.

    Abstract translation: 用于管理大数据的技术包括使用在受试者内具有多级子分类层级的每个主体词典的检索。 条目可以包括主题确定能力(SDP)分数,其提供关于包含该术语的字典的主题的入口词的描述性权力的指示。 相同的术语可能在每个词典中具有不同SDP分数的多个词典中的条目。 对包含描述一个或多个文档的搜索术语的一个或多个文档的检索请求可以通过标识被标记的主题的候选文本集合来处理,即,具有与搜索项对应的条目的每个主体词典的标识符,然后使用 亲和力值来调整字典中术语的总分。 然后根据调整后的分数选择文档以与对象最佳匹配。 或者,可以通过根据调整的分数重新排序来选择文档之后执行调整。

    Action-Object Recognition in Cluttered Video Scenes Using Text

    公开(公告)号:US20220165047A1

    公开(公告)日:2022-05-26

    申请号:US17668526

    申请日:2022-02-10

    Abstract: A mechanism is provided to implement an action-object interaction detection mechanism for recognizing actions in cluttered video scenes. An object hounding box is computed around an object of interest identified in a corresponding label in an initial frame where the object of interest appears in the frame. The object bounding box is propagated from the initial frame to a subsequent frame. For the initial frame and the subsequent frame: the object bounding boxes of the initial frame and the subsequent frame are refined and cropped based on the associated refined object bounding boxes. The set of cropped frames are processed to determine a probability that an action that is to be verified from the corresponding label is being performed. Responsive to determining the probability is equal to or exceeds a verification threshold, a confirmation is provided that the action-object interaction video performs the action that is to be verified.

    Document tagging and retrieval using entity specifiers
    8.
    发明授权
    Document tagging and retrieval using entity specifiers 有权
    使用实体说明符进行文档标记和检索

    公开(公告)号:US09251136B2

    公开(公告)日:2016-02-02

    申请号:US14055379

    申请日:2013-10-16

    Abstract: Techniques for managing big data include tagging of documents and subsequent retrieval using per-subject dictionaries having entries with some entries specially designated as entities. An entity indicates that the term in the entry has special meaning, e.g., brands (trademarks/service marks), trade names, geographic identifiers or other classes of terms. A dictionary may include a non-entity entry for a term and one or more entity entries, for different entity types. The entries may also include subject-determining-power scores. The subject-determining-power scores provide an indication of the descriptive power of the term with respect to the subject of the dictionary containing the term. The same term may have entries in multiple dictionaries with different subject-determining-power scores in each of the dictionaries. The entity distinctions for a term can then be used in tagging documents and processing retrieval requests.

    Abstract translation: 用于管理大数据的技术包括使用每个主体词典标记文档和随后的检索,该条目具有特定指定为实体的条目。 实体表示条目中的术语具有特殊含义,例如品牌(商标/服务标记),商品名称,地理标识符或其他类别的术语。 字典可以包括用于不同实体类型的术语的非实体条目和一个或多个实体条目。 条目也可以包括被摄体确定功率得分。 受试者决定力分数提供关于包含该术语的词典的主题的术语的描述力的指示。 同一术语可能在多个词典中具有不同的词典确定能力得分的条目。 然后可以将术语的实体区分用于标记文档和处理检索请求。

    DOCUMENT TAGGING AND RETRIEVAL USING ENTITY SPECIFIERS
    9.
    发明申请
    DOCUMENT TAGGING AND RETRIEVAL USING ENTITY SPECIFIERS 有权
    使用实体指定器的文档标记和检索

    公开(公告)号:US20150106376A1

    公开(公告)日:2015-04-16

    申请号:US14055379

    申请日:2013-10-16

    Abstract: Techniques for managing big data include tagging of documents and subsequent retrieval using per-subject dictionaries having entries with some entries specially designated as entities. An entity indicates that the term in the entry has special meaning, e.g., brands (trademarks/service marks), trade names, geographic identifiers or other classes of terms. A dictionary may include a non-entity entry for a term and one or more entity entries, for different entity types. The entries may also include subject-determining-power scores. The subject-determining-power scores provide an indication of the descriptive power of the term with respect to the subject of the dictionary containing the term. The same term may have entries in multiple dictionaries with different subject-determining-power scores in each of the dictionaries. The entity distinctions for a term can then be used in tagging documents and processing retrieval requests.

    Abstract translation: 用于管理大数据的技术包括使用每个主体词典标记文档和随后的检索,该条目具有特定指定为实体的条目。 实体表示条目中的术语具有特殊含义,例如品牌(商标/服务标记),商品名称,地理标识符或其他类别的术语。 字典可以包括用于不同实体类型的术语的非实体条目和一个或多个实体条目。 条目也可以包括被摄体确定功率得分。 受试者决定力分数提供关于包含该术语的词典的主题的术语的描述力的指示。 同一术语可能在多个词典中具有不同的词典确定能力得分的条目。 然后可以将术语的实体区分用于标记文档和处理检索请求。

    DOCUMENT TAGGING AND RETRIEVAL USING PER-SUBJECT DICTIONARIES INCLUDING SUBJECT-DETERMINING-POWER SCORES FOR ENTRIES
    10.
    发明申请
    DOCUMENT TAGGING AND RETRIEVAL USING PER-SUBJECT DICTIONARIES INCLUDING SUBJECT-DETERMINING-POWER SCORES FOR ENTRIES 有权
    使用包含用于入门的主体确定功率的主题词语的文档标记和检索

    公开(公告)号:US20140337357A1

    公开(公告)日:2014-11-13

    申请号:US13891610

    申请日:2013-05-10

    Abstract: Techniques for managing big data include tagging of documents and subsequent retrieval using per-subject dictionaries having entries with subject-determining-power scores. The subject-determining-power scores provide an indication of the descriptive power of the term with respect to the subject of the dictionary containing the term. The same term may have entries in multiple dictionaries with different subject-determining-power scores in each of the dictionaries. A retrieval request for one or more documents containing search terms descriptive of the one or more documents can be processed identifying a set of candidate documents tagged with subjects and optional terms, and then applying subject-determining-power scores from the multiple dictionaries for the search term to determine a subject for the search term. The method then selects the one or more documents from the candidate documents according to the subject.

    Abstract translation: 用于管理大数据的技术包括使用具有主题确定能力分数的条目的每个主题词典来标记文档和随后的检索。 受试者决定力分数提供关于包含该术语的词典的主题的术语的描述力的指示。 同一术语可能在多个词典中具有不同的词典确定能力得分的条目。 可以对包含描述一个或多个文档的搜索项的一个或多个文档的检索请求进行处理,以识别标记有主题和可选项的候选文本集合,然后从多个字典中应用主题确定权力分数进行搜索 以确定搜索词的主题。 然后,该方法根据对象从候选文档中选择一个或多个文档。

Patent Agency Ranking