Abstract:
The invention refers to the area of control of a limb device in the form of an artificial limb for a human or a robot limb. In particular, the invention is related to a control unit for electrically controlling an electrically controllable limb device, the limb device comprising a plurality of actuators, the control unit comprising a first interface for connecting the control unit to the limb device, the control unit comprising a second interface for connecting the control unit to a data gathering device comprising one or more sensing devices, the control unit comprising a processing unit which is arranged for controlling the limb device at least based on data gathered by the data gathering device, wherein the control unit is arranged for outputting one single control action step to the actuators of the limb device calculated by the processing unit based on a first data or data combination received from the data gathering device, and the control unit is arranged for outputting a plurality of control action steps to the actuators of the limb device calculated by the processing unit based on a second data or data combination received from the data gathering device, the second data or data combination being different from the first data or data combination, the plurality of control action steps inducing a more complex automatic movement of the limb device that the one single control action step. The invention further refers to a system comprising such a control unit, a method for controlling an electrically controllable limb device and a computer program.
Abstract:
Disclosed is a tactile sensing and integrated vision system that surmounts problems of existing systems. The tactile sensing skin can be formed into any shape, size, or form factor, including large areas. Computer-implemented algorithms can detect position-orientation and force-torque at landmark points for a given object set. The result is a modular sensing system that is highly scalable in terms of price, quantity, size and applications. Such skin technology and associated software can comprise a sensing package that integrates tactile and visual data with accompanying software for state estimation, situational awareness, and automatic control of machinery. The addition of tactile data can serve to constrain and/or augment visual pose estimation methods as well as provide pose estimation to visually occluded objects.
Abstract:
A force control robot which controls a motion of a robotic arm based on a detection value of a force detector, the force control robot including: the robotic arm having one end as a fixed end and another end as a movable end; an end effector connected to the movable end of the arm through an elastic member, the end effector having a grip driving portion and a grip mechanism portion configured to grip a part; the force detector configured to detect an external force exerted on the grip mechanism portion of the end effector, based on a deformation amount of the elastic member; an end effector controller disposed at the movable end of the arm and configured to control the grip driving portion of the end effector; and a robotic controller configured to control the motion of the arm.
Abstract:
To provide a tool transfer apparatus including gripping force measuring unit for tool holding unit of a tool accommodation apparatus and a machining system including the tool transfer apparatus, a handling robot can perform operation of detaching a tool from a grip positioned at a tool attachment/detachment position of a tool magazine in a machine tool and transferring the tool to a tool stocker, and operation of transferring a tool from the tool stocker and attaching the tool to a grip positioned at the tool attachment/detachment position of the tool magazine. A hand portion of the handling robot is provided with a force sensor, which can detect a load applied to the hand portion. Also, a control apparatus of the handling robot and a control apparatus of the machine tool are connected via a data cable capable of transmission and reception of information.
Abstract:
A method for calculating weight and center of gravity of an object lifted by a robot includes lifting an object, measuring a change in angle of each joint through an angle sensor provided for each joint of the gripper in the event of the lifting, and calculating angular velocity and acceleration of each joint, calculating, via a controller, acceleration of the object, measuring an upper pressing force and a lower pressing force using force sensors installed on the joints, and calculating, via the controller, the weight of the object using a vertical component of the acceleration of the object, gravitational acceleration, and the upper and lower pressing forces.
Abstract:
A method in which an apparatus receives first sensor data from first sensors and determines a target position from the data, the target position may be a position in space or an orientation of a gripper in a robot arm First instructions are issued to the robot arm or the gripper in order to move a gripper to the target position. Force feedback sensor data is received from force feedback sensors associated with either the robot arm or the gripper or from the first sensors. A failure in carrying out the first instructions is determined. Second sensor data is received from the at least one first sensor. Successful gripping of an object is determined from the second sensor data.
Abstract:
A method in which an apparatus receives first sensor data from first sensors and determines a target position from the data, the target position may be a position in space or an orientation of a gripper in a robot arm First instructions are issued to the robot arm or the gripper in order to move a gripper to the target position. Force feedback sensor data is received from force feedback sensors associated with either the robot arm or the gripper or from the first sensors. A failure in carrying out the first instructions is determined Second sensor data is received from the at least one first sensor. Successful gripping of an object is determined from the second sensor data.
Abstract:
The invention refers to the area of control of a limb device in the form of an artificial limb for a human or a robot limb. In particular, the invention is related to a control unit for electrically controlling an electrically controllable limb device, the limb device comprising a plurality of actuators, the control unit comprising a first interface for connecting the control unit to the limb device, the control unit comprising a second interface for connecting the control unit to a data gathering device comprising one or more sensing devices, the control unit comprising a processing unit which is arranged for controlling the limb device at least based on data gathered by the data gathering device, wherein the control unit is arranged for outputting one single control action step to the actuators of the limb device calculated by the processing unit based on a first data or data combination received from the data gathering device, and the control unit is arranged for outputting a plurality of control action steps to the actuators of the limb device calculated by the processing unit based on a second data or data combination received from the data gathering device, the second data or data combination being different from the first data or data combination, the plurality of control action steps inducing a more complex automatic movement of the limb device that the one single control action step. The invention further refers to a system comprising such a control unit, a method for controlling an electrically controllable limb device and a computer program.
Abstract:
An end effector base and a finger unit are formed as separate members, and are disposed with a space therebetween. A force sensor is fixed to a finger base of the finger unit, and is disposed with a space between it and the end effector base. Three supporting members are supported by the end effector base, and are configured to be able to be moved by the driving of a driving unit to a position where they support the force sensor and a position where they are separated from the force sensor and support the finger unit.
Abstract:
A method for calculating weight and center of gravity of an object lifted by a robot includes lifting an object, measuring a change in angle of each joint through an angle sensor provided for each joint of the gripper in the event of the lifting, and calculating angular velocity and acceleration of each joint, calculating, via a controller, acceleration of the object, measuring an upper pressing force and a lower pressing force using force sensors installed on the joints, and calculating, via the controller, the weight of the object using a vertical component of the acceleration of the object, gravitational acceleration, and the upper and lower pressing forces.