摘要:
There is provided a roll surface machining method and apparatus for using a cutting tool to carry out ultra-precision machining in the surface of a roll with a reduced amount of data. The apparatus and method for roll surface machining includes setting a machining start position of a cutting tool with respect to the surface of the roll by C-axis indexing of the roll and positioning of the roll in the axial direction (Z-axis direction) both with respect to the cutting tool. Also the cutting tool and the roll are moved relative to each other in the axial direction of the roll by position control using C-Z axis interpolation, thereby forming a three-dimensional pattern in the surface of the roll.
摘要:
There is provided a roll surface machining method which makes it possible to machine a roll with a reduced amount of data. The roll surface machining method for forming a three-dimensional pattern of protrusions or recesses in the surface of a roll by using a cutting tool, the method including the steps of: setting a machining start position of the cutting tool with respect to the surface of the roll by C-axis indexing of the roll and positioning of the roll in the axial direction (Z-axis direction) both with respect to the cutting tool; and rotating the roll at a predetermined speed and moving the cutting toot and the roll relative to each other at a predetermined speed in the axial direction of the roll by C-Z axis interpolation, thereby forming the three-dimensional pattern in the surface of the roll.
摘要:
A numerical control method is provided which is capable of forming a circular are on a cylindrical surface of a cylindrical workpiece with high accuracy by the use of a simplified program. At first, a circumferential distance interval between the start and end points of a circular arc to be machined is calculated on the basis of a moving command value for a rotation axis indicative of an angular interval in the circumferential direction of the workpiece (S3). Then, a circular are interpolation processing is executed on the thus calculated distance interval and a moving command value for a linear axis indicative of an interval between the start and end points in the axial direction of the workpiece, to thereby calculate distribution amounts for the rotation and linear axes, respectively (S4). Further, control along the linear axis is performed in accordance with the distribution amount for the same axis obtained by the interpolation processing, and at the same time, control around the rotation axis is performed in accordance with a distribution amount represented by a unit of angle, which is obtained by a length/angle conversion of the distribution amount for the rotation axis obtained by the interpolation processing (S6, S7), to thereby carry out circular arc machining.
摘要:
A tool path generating device (20) which generates a tool path (L1) for machining a hairline-shaped long narrow groove (Wa) of on a workpiece surface (W0), includes a shape data acquisition part which acquires shape data of a workpiece, a parameter setting part (23) which sets a shape parameter of a hairline corresponding to the long narrow groove (Wa), and a path generating part (24) which generates a tool path (L1) for a hairline machining, based on the shape data acquired by the data acquisition part and the shape parameter set by the parameter setting part (23).
摘要:
There is provided a roll surface machining method and apparatus for using a cutting tool to carry out ultra-precision machining in the surface of a roll with a reduced amount of data. The apparatus and method for roll surface machining includes setting a machining start position of a cutting tool with respect to the surface of the roll by C-axis indexing of the roll and positioning of the roll in the axial direction (Z-axis direction) both with respect to the cutting tool. Also the cutting tool and the roll are moved relative to each other in the axial direction of the roll by position control using C-Z axis interpolation, thereby forming a three-dimensional pattern in the surface of the roll.
摘要:
There are provided a first machining method in which a tool (TL) is fed a predetermined amount (d) in a center direction of a blank to cut into the blank, after which the tool is fed in a cutting mode by an amount (W) corresponding to groove width longitudinally of the blank to perform grooving, and a second machining method in which the tool (TL) is fed in the center direction of the blank to perform machining down to the groove bottom (GB), after which the tool is raised to perform grooving. Based on data indicative of the shape of the tool used, it is decided whether to perform grooving down to the designated groove bottom (GB) by repeating the first machining method or perform grooving to a designated groove width by repeating the second machining method.
摘要:
A tool path generating device (20) which generates a tool path (L1) for machining a hairline-shaped long narrow groove (Wa) of on a workpiece surface (W0), includes a shape data acquisition part which acquires shape data of a workpiece, a parameter setting part (23) which sets a shape parameter of a hairline corresponding to the long narrow groove (Wa), and a path generating part (24) which generates a tool path (L1) for a hairline machining, based on the shape data acquired by the data acquisition part and the shape parameter set by the parameter setting part (23).
摘要:
There is provided a roll surface machining method and apparatus for using a cutting tool to carry out ultra-precision machining in the surface of a roll with a reduced amount of data. The apparatus and method for roll surface machining includes setting a machining start position of a cutting tool with respect to the surface of the roll by C-axis indexing of the roll and positioning of the roll in the axial direction (Z-axis direction) both with respect to the cutting tool. Also the cutting tool and the roll are moved relative to each other in the axial direction of the roll by position control using C-Z axis interpolation, thereby forming a three-dimensional pattern in the surface of the roll.
摘要:
A cylindrical interpolation system for machining a cylindrical surface of a cylindrical workpiece, wherein a tool diameter correcting means (104) obtains a tool center path by calculating a tool diameter offset vector for a machining shape specified with reference to an assumed orthogonal coordinate system, and an interpolating means (107) interpolates the tool center path and outputs an interpolation pulse (PCyi) related to an assumed linear axis and an interpolation pulse (PZi) related to a cylindrical axis. To effect a reverse conversion from the assumed orthogonal coordinate system to the cylindrical coordinate system, a pulse converting means (108) converts the interpolation pulse (PCyi) into an interpolation pulse (PCi) for rotating the rotary axis. A block-start correction component calculating means (105) and synchronous correction component calculating means (109) calculate correction components (Vcy, .DELTA.Vcy), and these correction components (Vcy, .DELTA.Vcy) are interpolated by a block-start correction component interpolating means (106) and synchronous correction component interpolating means (110), and added to the interpolation pulse (PCi) for rotating the rotary axis. As a result, the tool cutting surface can be always located immediately above the axis of rotation of the workpiece, and the side surface being machined is at a right angle to the cylindrical surface of the workpiece.
摘要:
In a method for determining a groove machining process based on numerical control information generating functions, a groove machining process is automatically determined based on characteristics of shape elements adjacent to groove shape elements as well as the shapes of the groove shape elements. The groove machining process can therefore be easily optimized.