Abstract:
A hologram recording composition includes at least: a photopolymerizable compound containing at least a first photopolymerizable monomer; binder resin that is inactive to photopolymerization; and a photopolymerization initiator. A change in polarity of the first photopolymerizable monomer by photopolymerization reduces compatibility with the binder resin of the photopolymerizable compound than that before polymerization, the compatibility of the photopolymerizable compound before the polymerization being high.
Abstract:
Articles for recording a holographic image are described. The articles include a holographic recording medium having a plurality of surfaces, having a transparent polymeric binder and a photochemically active dye, the holographic recording medium having a holographic image recorded therein formed by exposed areas of the photochemically active dye and unexposed areas of the photochemically active dye; and a first light-blocking layer or material over a first surface of the holographic recording medium from which surface the holographic image is viewed, the light blocking layer or material absorbing light in the wavelength range to which the photochemically active dye is sensitive and allowing transmission of light in a different wavelength range for viewing the holographic image.
Abstract:
A hyperspectral holographic polymer dispersed liquid crystal (HPDLC) medium comprising broadband reflective properties may comprise dopants that result in a hyperspectral HPDLC with fast transitional switching speeds. Dopants may include alliform carbon particles, carbon nanoparticles, piezoelectric nanoparticles, multiwalled carbon nanotubes, a high dielectric anisotropy compound, semiconductor nanoparticles, electrically conductive nanoparticles, metallic nanoparticles, or the like. A technique for fabrication of hyperspectral broadband HPDLC mediums may involve dynamic variation of the holography setup during HPDLC formation and spatial multiplexing that may enable broadening of the HPDLC medium's wavelength response. Fabrication may include concurrently running multiple exposures and exploiting superpositioning of the resultant gratings. The hyperspectral HPDLC may be capable of blocking and/or filtering wavelengths in the range of approximately 390 nm to approximately 12 μm.
Abstract:
A lighting optical system is electrically (instead of mechanically) controlled in terms of light distribution, while miniaturization of the optical system can be achieved with suppressed production costs. The lighting optical system can include a light source which emits light beams, a holographic liquid crystal element which converts the light beams from the light source to regeneration light beams forming a prescribed light distribution pattern or alternatively which allows the light beams to pass therethrough as they are, in accordance with a voltage applied thereto, a phosphor plate which can be excited by the regeneration light beams from the holographic liquid crystal element and emit visible light beams, and a lens which projects the visible light beams from the phosphor plate.
Abstract:
The image display device including a lighting unit having a plurality of light source units, a hologram optical unit, which reproduces light to form a plurality of screen images spatially apart from each other when light is incident from the lighting unit, and a display panel, which modulates light reproduced by the hologram optical unit according to image signals.
Abstract:
A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octanoic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains.
Abstract:
A dynamic hologram is formed in anisotropic liquid crystal (LC) gel materials. By applying an electric field, the orientation of part of the liquid crystals can be altered and the hologram can be turned on and off. Using LC gels allows for holographic elements with no diffraction in the voltage off state so that the hologram appears only during application of an electric field. Also, the anisotropic LC gels maintain polarization dependence. The dynamic holograms are suitable in e.g. dynamic holographic optical components whereby an optical function can be included/excluded in a beam path without introducing or removing elements.
Abstract:
A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octancic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved. The optional use of a surfactant allows low switching voltages at lower frequencies than without a surfactant. In an alternative embodiment, a PDLC material in accordance with the invention can be utilized to form reflection gratings, including switchable reflection gratings. In still further embodiments, a PDLC material in accordance with the invention can be used to form switchable subwavelength gratings. By further processing, static transmission, reflection, and subwavelength PDLC materials can be formed. In addition, PDLC materials in accordance with the present invention can be used to form switchable slanted transmission gratings suitable for switchable optical coupling and reconfigurable optical interconnects.
Abstract:
Transmission and reflection type holograms may be formed utilizing a novel polymer-dispersed liquid crystal (PDLC) material and its unique switching characteristics to form optical elements. Applications for these switchable holograms include communications switches and switchable transmission, and reflection red, green, and blue lenses. The PDLC material of the present invention offers all of the features of holographic photopolymers with the added advantage that the hologram can be switched on and off with the application of an electric field. The material is a mixture of a polymerizable monomer and liquid crystal, along with other ingredients, including a photoinitiator dye. Upon irradiation, the liquid crystal separates as a distinct phase of nanometer-size droplets aligned in periodic channels forming the hologram. The material is called a holographic polymer-dispersed liquid crystal (H-PDLC).
Abstract:
A multicolored reflection liquid crystal display device includes a pair of substrates having a reflective holographic polymer dispersed liquid crystal (H-PDLC) film disposed therebetween. The H-PDLC film contains at least two different reflection gratings capable of reflecting two different wavelengths of light. A multicolored reflection H-PDLC is obtained by simultaneously illuminating a plurality of regions of a film comprised of a mixture of a liquid crystal and a photo-polymerizable monomer with a plurality of holographic light patterns capable of providing liquid crystal layers of different spacings so as to obtain different reflection gratings in each of the regions. A mask is placed between each of the laser light beams and the film to form a pattern of light and dark regions on the film. Each mask is positioned such that at least one light region of a first beam pair coincides with at least one dark region of a second beam pair within the film. A multiple grating liquid crystal display device including an H-PDLC film having a first region comprising liquid crystal and matrix polymer layers forming a transmission grating and a second region comprising liquid crystal and matrix polymer layers forming a reflection grating capable of reflecting a preselected wavelength of light also is described.