Abstract:
A projector includes a lamp that emits projection light to project 3D picture, in which a right eye image and a left eye image are represented in a time division manner, to an object, a synchronization signal transmission section which transmits shutter synchronization signal to glasses having a right eye shutter and a left eye shutter to control the opened state or the closed state of the right eye shutter and the left eye shutter, based on the signal indicating a displaying period of the right eye image and the left eye image of 3D picture, and a lamp drive section that supplies AC current having peak overlapping with a period when the right eye shutter of the glasses is in the opened state and peak overlapping with a period when the left eye shutter of the glasses is in the opened state to the lamp, based on the signal.
Abstract:
A light-source module includes a light-source unit, a first projection lens, a first lens, a mirror wheel, a first light-guiding unit, a second light-guiding unit, and a second projection lens. The first projection lens has an entrance pupil. The light beam provided by the light-source unit can pass through the first projection lens via the entrance pupil and then is guided to the mirror wheel. With the rotation of the mirror wheel, when the light beam passes through the mirror wheel, it becomes a transmission light beam. At different time, when the light beam is reflected by the mirror wheel, it becomes a reflection light beam. The second projection lens has a first exit pupil and a second exit pupil, in which the transmission light beam and the reflection light beam pass through the second projection lens via the first exit pupil and the second exit pupil, respectively.
Abstract:
An image projecting system and a synchronization method for use in the image projecting system are provided. The image projecting system comprises a projector, a pair of stereoscopic glasses and a light meter. The projector projects a left-right eye test image according to a timing, and generates a plurality of left-right eye synchronization signals according to the timing. The light meter, electrically connected to the projector, measures a plurality of left-lens brightness values and a plurality of right-lens brightness values through a left lens and a right lens of the pair of stereoscopic glasses, respectively. The projector calculates a plurality of left-lens light leakage values and a plurality of right-lens light leakage values corresponding to the left-right eye synchronization signals according to the left-lens brightness values and the right-lens brightness values, respectively, so as to choose one of the left-right eye synchronization signals as an adjusted left-right eye synchronization signal.
Abstract:
A video controller for synchronizing presentation of a plurality of images is provided. A color switching device is operable to continually select a color out of a set consisting essentially of a plurality of fundamental colors. Each fundamental color is selected for presentation for a fixed time segment. A light processing element is operable to block and permit transmission of light in each color selected by the color switching device during each fixed time segment. The light includes at least two streams of sequential images. A synch signal generator is in control of the light processing element and is configured to time presentation of the light by the light processing element and of control signals to a viewing device of the display. The presentation of the light and of the control signals is timed in synchrony with the fixed time segments only during a transition state of the viewing device.
Abstract:
A projector that outputs a first picture and a second picture alternately, wherein a control section performs first control and second control, controls a discharge lamp driving section. In the first control and the second control, the absolute value of a drive current is relatively small in a first period and relatively large in a second period. In the first control, the energy provided to a first electrode in the second period is greater than the energy provided to the second electrode in the second period. In the second control, the energy provided to the second electrode in the second period is greater than the energy provided to the first electrode in the second period.
Abstract:
A front-projection 3D autostereoscopic display system using time-sequencing approach is configured for forming a plurality of perspective views of 3D images of an object or scene in a field of view. The 3D displays system comprises a display component, an optical scanning assembly, a sensor and a controller. The optical scanning assembly includes a first lens array, an optical beam shifting device, an optical projection block and a reflection screen. The reflection screen comprises a second converging lens array and a mirror. In the first and second embodiments of the present invention the reflection screen is made respectively flat or curved. The present invention can be used with a wide range of screen sizes especially for large screens and allows significant reduction or elimination of optical cross-talk and also reduces mechanical complexity of 3D display system.
Abstract:
A discharge lamp lighting device includes: a discharge lamp drive section which supplies electric power to a discharge lamp; a voltage detecting section which detects drive voltage of the discharge lamp; and a control section which controls the discharge lamp drive section, wherein the control section performs a first control process of controlling the discharge lamp drive section so that the electric power supplied to the discharge lamp is a first power based on the drive voltage detected by the voltage detecting section during a period when the first control process is previously performed, and a second control process of controlling the discharge lamp drive section so that the electric power supplied to the discharge lamp is a second power different from the first power based on the drive voltage detected by the voltage detecting section during a period when the second control process is previously performed.
Abstract:
A front-projection 3D autostereoscopic display system using time-sequencing approach is configured for forming a plurality of perspective views of 3D images of an object or scene in a field of view. The 3D displays system comprises a display component, an optical scanning assembly, a sensor and a controller. The optical scanning assembly includes a first lens array, an optical beam shifting device, an optical projection block and a reflection screen. The reflection screen comprises a second converging lens array and a mirror. In the first and second embodiments of the present invention the reflection screen is made respectively flat or curved. The present invention can be used with a wide range of screen sizes especially for large screens and allows significant reduction or elimination of optical cross-talk and also reduces mechanical complexity of 3D display system.
Abstract:
A pair of shutter glasses comprises: a pair of shutter members each of which has the following states switchable from one to the other: an incident light transmitting state and an incident light blocking state; a frame member in which the pair of shutter members are accommodated; and a drive circuit and a drive power supply that drive the shutter members. The frame member includes: a rim to which the shutter members are attached; and a pair of temples each of which has one end connected to the rim. At least one of the drive circuit and the drive power supply is accommodated on the other end side of the temple.
Abstract:
A method of projecting an image is provided. The method includes the step of providing a first light source, the first light source emitting light at a first polarization. A second light source is provided adjacent the first light source, the second light source emitting light at a second polarization. A digital mirror device is provided (DMD), the DMD having a first axis. A mirror is provided optically disposed between the first light source, the second light source and the DMD, the mirror being adjacent the DMD. A first light is emitted from the first light source. The first light is reflected with the mirror onto the DMD. A second light is emitted from the second light source after the first light is emitted. The second light is reflected with the mirror onto the DMD.