Abstract:
A plurality of magnetic field sensors (26), for example arranged in an array (30), is operative to measure changes in magnetic field strength proximate the surface(s) (18, 24) of a test structure (10). The test structure (10) may approximate the geometry of an airplane fuselage, wing, or the like. An electric current is applied to the test structure (10), and the magnetic field sensors (26) sense changes in a magnetic field caused by the current. A corresponding plurality of integrators (32) convert the sensor (26) outputs to magnetic field strength values. From the plurality of magnetic field strength values and corresponding sensor locations (27), a current density over the target surface (10) is inferred.
Abstract:
A method for measuring critical current density of superconductor wires according to the present invention is characterized in that it includes: (a) applying an external magnetic field to the superconductor wires, (b) measuring a magnetization loss of the superconductor wires according to the application of the external magnetic field, (c) normalizing the measured magnetization loss, and then calculating a fully-penetration magnetic field of the superconductor wires according to the normalized magnetization loss, (d) calculating a critical current density of the superconductor wires according to the calculated fully-penetration magnetic field. Therefore, the critical current density of parallel superconductor wires such as stacked superconductor wires may be measured without applying current to the superconductor wires directly.
Abstract:
For the indirect measurement of the distribution of the anode currents in electrolytic cells operated with alkali metal chloride according to the amalgam process the cell voltage is determined without unnecessary ohmic connections between the current carrying elements of the cells and other conductive elements thereof.
Abstract:
A method for controlling flashing speed during resistance butt welding comprises measuring values of current density for at least two joints between parts being welded, converting them into d-c. voltages, detecting a maximum voltage value, comparing it to a preset d-c. voltage, the resultant difference value being used as flashing speed control parameter. An apparatus for carrying out the method comprises electric circuits whose number is equal to the number of joints being welded. Each circuit comprises a welding transformer and a circuit for conversion of flashing current density into d-c. voltage. A maximum signal detector comprises circuits for conversion of current density into d-c. voltages, whose number is equal to the number of joints being welded. The detector output is connected to the circuit for comparing a current voltage value to the preset one. The apparatus according to the invention may be used mainly for controlling flashing speed during concurrent resistance butt welding of several joints of large and different respective cross-sectional areas.
Abstract:
Systems and methods can provide a fast and accurate way to measure conductivity and Hall effect, such that transient conductivities, transient carrier densities or transient mobilities can be measured on millisecond time scales, for example. The systems and methods can also reduce the minimum magnetic field needed to extract carrier density or mobility of a given sample, and reduce the minimum mobility that can be measured with a given magnetic field.
Abstract:
A method for detecting a current density distribution in a fuel cell stack by detecting the magnetic field, which surrounds the fuel cell stack and which is caused by a current flow in the fuel cell stack, is provided. Sensors for an x-component, a y-component and a z-component of the magnetic flux density detect the magnetic flux density at several points outside the fuel cell stack. The position of the sensors for the magnetic flux density is detected in relation to the fuel cell stack. The thus detected values for the magnetic flux density and the allocated position are converted into current density values according to the position in the fuel cell stack by using a Maxwell equation which defines the magnetic field strength and the material equation which relates the magnetic field strength to the magnetic flux density.
Abstract:
A method for detecting a current density distribution in a fuel cell stack by detecting the magnetic field, which surrounds the fuel cell stack and which is caused by a current flow in the fuel cell stack, is provided. Sensors for an x-component, a y-component and a z-component of the magnetic flux density detect the magnetic flux density at several points outside the fuel cell stack. The position of the sensors for the magnetic flux density is detected in relation to the fuel cell stack. The thus detected values for the magnetic flux density and the allocated position are converted into current density values according to the position in the fuel cell stack by using a Maxwell equation which defines the magnetic field strength and the material equation which relates the magnetic field strength to the magnetic flux density.
Abstract:
A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.
Abstract:
Apparatus for and methods of monitoring the current comprised by a beam of charged particles, for example a focussed ion beam as used for ion implantation of surfaces such as semiconductor circuit substrates, is described. The beam is amplitude modulated and the resultant corresponding modulation of the magnetic field strength of the beam is detected, for example by a toroidal coil, to produce an output signal proportional to the field strength modulation and therefore proportional to the beam current. A plurality, for example four, of said output signals may be derived from positions spaced around the beam to enable any deviation of the beam from the desired path to be determined, and any deviation signal obtained may be used to return the beam to the desired path.