Abstract:
Disclosed is a method/apparatus to determine any one of a plurality of parameters: shape, area, chemical composition, diameter, color, number, thickness, width, length, absorptivity, reflectivity, transmittivity, dielectric constant, raman scattering profile, fluorescence, surface tension, roughness, profile, density, position and orientation. Also use of a plurality of energy beams as source energy: charged and neutral particle beams, gamma-, X-, micro-, optical and acoustic waves. The described apparatus determines the mean and standard deviation of a plurality of diameters of wool fibers, and includes a He-Ne laser (101), and a pinhole (102) which produce an expanding laser beam which passes through cell (105). Beam splitter (103) is operatively disposed to pinhole (102) and laser (101) to direct a portion of the laser beam to reference detector (109) which is electrically connected to processor (110) via line (111). When apparatus (100) is operating wool fibers in an isopropanol-wool slurry pass through cell (105) generally at a non-zero degree angle to the direction of slurry flow through cell (105) to interact with the laser beam in cell (105 ). Beam splitter (104) and microscope objective (106) are operatively disposed with respect to laser (101), pinhole (102) and cell (105) to produce an in focus magnified transmission image of wool fibers in cell (105) in the plane of end (107) of optical fiber bundle (108). Each of the fibers in bundle (108) is connected to a photodiode detector (112). Processor/timer (113) is connected electrically to detector (112) by line (114). Processor/timer (113) is also connected electrically to computer (115) by line (116) and to processor (110) by line (117). Detector (118) is connected electrically to processor (110) by line (119). Processor (110) is connected electrically to computer (115) by line (120). Detector (118) is operatively disposed with respect to laser (101), pinhole (102) and cell (105) to detect outgoing light.
Abstract:
The invention relates to a spectrometer/colorimeter apparatus comprising an opto-electronic card (12) with the essential components of the apparatus mounted thereon, and in particular a spectrometer (14) having an inlet slot (16) and a strip (18) of photodetectors (20), and two optical fiber measurement paths (28) and two calibration paths (26), with the ends of the optical fibers being superposed in the inlet slot (16) of the spectrometer. The apparatus is particularly intended for use in an industrial environment.
Abstract:
Systems and methods for performing optical spectroscopy using a self-calibrating fiber optic probe are disclosed. One self-calibrating fiber optic probe includes a sensing channel for transmitting illumination light to a specimen and for collecting spectral data of the specimen. The spectral data includes the illumination light diffusely reflected from the specimen at one or more wavelengths. The self-calibrating fiber optic probe may also include a calibration channel for transmitting calibration light. The calibration light and the illumination light are generated simultaneously from a common light source. The calibration channel collects calibration spectral data associated with the calibration light contemporaneously with the collection of the spectral data of the specimen.
Abstract:
A photometer having a plurality of input fibers to its optical entrance, at least one of which is for transmission of calibration light and at least one of which is for transmission of sample light. The exit ends of these fibers are aligned into a linear array, thereby producing an effective entrance slit for the optical entrance of the photometer. The fiber(s) for calibration light are positioned at the center of the linear array to avoid miscalibration due to photometer astigmatism.
Abstract:
The slide analysis system includes a slide holding module spaced from an incubator module. A slide transfer device or pick and place mechanism withdraws slides from the slide holding module and inserts them into the incubator module. A metering device deposits serum onto a slide that is held in a spotting position by the slide transfer device. The metering device is movable to a sampling position in the slide holding module to aspirate serum from a serum source on the slide cartridge in the slide holding module and is also movable to a spotting position to spot serum on the slide held by the slide transfer device. The slide transfer device has rotational as well as transverse movement and includes jaws for gripping onto the sides of slides to withdraw a single slide from a cartridge, transport it to the incubator, insert the slide in the incubator and thereafter remove it from the incubator. The metering device also has rotational as well as elevational movement and includes a built-in pipette tip ejector for discarding a used pipette tip.
Abstract:
This invention relates to an optical absorptiometer which is characterized by a light source unit of a broad wavelength having a source of constant energy which is collimated into two light beams, one of which is transmitted through the liquid to be measured, and another beam which is transmitted through a conductor and acts as a reference beam, and a detector unit which contains two photocells, one photocell for measuring the beam transmitted through the liquid to be measured, and another photocell which measures the reference beam, a position in the absorptiometer for optically placing the liquid to be measured between the source unit and the detector unit, and means for measuring the energy difference between the light beams of the measured liquid and the reference beams in terms of absorbance, and means for converting this result to an electrical signal. In the preferred embodiment, the constant energy in the light source is controlled by feedback circuitry; the reference beam is transported by a fiber optic cable to the reference photocell of the detector unit; water condensation on the optical and viewing windows is prevented by means of dry air flow; the electrical signal is displayed and/or relayed to control an operation; and the reference beam is a segment of the original light beam from the source.
Abstract:
An optical system for sensing an environmental parameter, comprising: an optical pulse generator for generating an excitation pulse; a pulse splitter for splitting the excitation pulse into a sensing pulse and a reference pulse; a sensing arm for receiving the sensing pulse, the sensing arm comprising an emission sensor for sensing the environmental parameter, the optical emission sensor generating a first measurement pulse having a measurement wavelength; a reference arm for receiving the reference pulse, the reference arm comprising an emission artefact adapted to convert the reference pulse into a second measurement pulse having the measurement wavelength; a time delay line for delaying a relative propagation of the measurement pulses; a light detector for measuring an optical energy of the first and second measurement pulses; and an optical link for optically connecting the pulse generator to the pulse splitter, and the sensing and reference arms to the light detector.
Abstract:
An optical system for sensing an environmental parameter, comprising: a pulse generator for generating a first pulse having a first wavelength and a second pulse having a second wavelength; a pulse splitter for splitting each one of the first and second pulse into a sensing pulse and a reference pulse; a sensing arm for receiving the sensing pulses therefrom and comprising a spectro-ratiometric sensor; a reference arm for receiving the reference pulses; a time delay line for delaying a relative propagation of the sensing pulses and the reference pulses; a light detector for measuring an optical energy of the sensing pulse and the reference pulse, for the first and second wavelengths; and at least one optical link for optically connecting the pulse generator to the pulse splitter, and the sensing and reference arms to the light detector.
Abstract:
The apparatus for sensing plural gases is substantially a gas sensor adopting planar lightwave circuit for constructing reference optical path and sensing optical path, which is a flat structure with abilities of high accuracy, long-term stability, and short response time. The gas sensor can be widely applied for monitoring the safety of a working environment, securing the safety of workers, alerting potential hazard in a factory, inspecting harmful materials in a specific area, testing leakage of a pipeline, inspecting waste gas exhausted from automobile/motorcycle, and monitoring the living quality of household environment.
Abstract:
The apparatus for sensing plural gases is substantially a gas sensor adopting planar lightwave circuit for constructing reference optical path and sensing optical path, which is a flat structure with abilities of high accuracy, long-term stability, and short response time. The gas sensor can be widely applied for monitoring the safety of a working environment, securing the safety of workers, alerting potential hazard in a factory, inspecting harmful materials in a specific area, testing leakage of a pipeline, inspecting waste gas exhausted from automobile/motorcycle, and monitoring the living quality of household environment.