Abstract:
Methods and apparatus for preparing a smear for cytopathology or other analysis. In a representative embodiment, cells of a sample are subjected to a dielectrophoretic force to segregate the cells into two or more zones of a surface. The particles are attached to the surface, thereby defining a “segregated smear.” The segregated smear is then fixed and stained for cytopathology analysis.
Abstract:
The present disclosure is directed to a novel apparatus and novel methods for the separtion, characterization, and manipulation of matter. In particular, the invention combines the use of frequency-dependent dielectric and conductive properties of particulate matter and solubilized matter with the properties of the suspending and transporting medium to discriminate and separate such matter. The apparatus includes a chamber having at least one electrode element and at least one inlet and one output port into which cells are introduced and removed from the chamber. Matter carried through the chamber in a fluid stream is then displaced within the fluid by a dielectrophoretic (DEP) force caused by the energized electrode. Following displacement within the fluid, matter travels through the chamber at velocities according to the velocity profile of the chamber. After the matter has transitted through the chamber, it exits at the opposite end of the chamber at a characteristic position. Methods according to the invention involve using the apparatus for discriminating and separating matter for research, diagnosis of a condition, and therapeutic purposes. Examples of such methods may include separation of mixtures of cells, such as cancer cells from normal cells, separation of parasitized erythrocytes from normal erythrocytes, separation of nucleic acids, and others.
Abstract:
The present invention refers to a method of purifying a glucagon-like peptide 1 analogs, the method comprising a two dimensional reversed phase high performance liquid chromatography protocol, wherein the first step is carried out at a pH value between 7.0 to 7.8 using a mobile phase comprising a phosphate buffer and acetonitrile, and the second step is carried out at a pH value below 3.0 using a mobile phase comprising trifluoroacetic acid and acetonitrile.
Abstract:
A micropump that pumps liquid using electrothermally-induced flow is described, along with a corresponding self-regulating pump and infusion pump. The micropump has applications in microfluidic systems, such as biochips. The self-regulating infusion pump is useful for administration of large and small volumes of liquids such as drugs to patients and can be designed for a wide range of flow rates by combining multiple micropumps in one infusion pump system. The micropump uses electrode sequences on opposing surfaces of a flow chamber that are staggered with respect to each other. The opposing surfaces include staggered electrodes that have the same phase and same electrode sequence. As such electrodes with the same phase are staggered and not eclipsed.
Abstract:
Methods and apparatus for preparing a smear for cytopathology or other analysis. In a representative embodiment, cells of a sample are subjected to a dielectrophoretic force to segregate the cells into two or more zones of a surface. The particles are attached to the surface, thereby defining a nullsegregated smear.null The segregated smear is then fixed and stained for cytopathology analysis.
Abstract:
Methods and apparatus for discriminating matter in a chamber having an inlet port and an outlet port utilizing dielectrophoresis and field flow fractionation. A carrier medium is introduced into the inlet port and is directed from the inlet port to the outlet port according to a velocity profile. A programmed voltage signal is applied to an electrode element coupled to the chamber to form a dielectrophoretic force on the matter. The dielectrophoretic force is balanced with a gravitational force to displace the matter to positions within said velocity profile in the carrier medium to discriminate the matter. A chamber having a top and bottom outlet port may be utilized to withdraw a first portion of a carrier medium from the top outlet port at a first, controllable fluid flow rate and to withdraw a second portion of the carrier medium from the bottom outlet port at a second, controllable fluid flow rate.
Abstract:
A micropump that pumps liquid using electrothermally-induced flow is described, along with a corresponding self-regulating pump and infusion pump. The micropump has applications in microfluidic systems such as biochips. The self-regulating infusion pump is useful for the administration of large and small volumes of liquids such as drugs to patients and can be designed for a wide range of flow rates by combining multiple micropumps in one infusion pump system.
Abstract:
A micropump that pumps liquid using electrothermally-induced flow is described, along with a corresponding self-regulating pump and infusion pump. The micropump has applications in microfluidic systems such as biochips. The self-regulating infusion pump is useful for the administration of large and small volumes of liquids such as drugs to patients and can be designed for a wide range of flow rates by combining multiple micropumps in one infusion pump system.
Abstract:
Methods and apparatuses for discriminating matter utilizing dielectrophoresis combined with magnetophoresis. A sample having one or more constituents is injected into an inlet port of a chamber. A carrier medium flow is initiated at the inlet port to establish a flow within the chamber. A dielectrophoretic force is generated to act on the constituents of the sample. A magnetophoretic force is generated to act on the constituents of the sample. The dielectrophoretic force and magnetophoretic forces are balanced to position the constituents within the chamber. The constituents are then collected at one or more outlet ports of the chamber according to the dielectric and magnetic characteristics of the constituents. The constituents may be collected as a function of time-of-exit from the chamber and/or position within the chamber.
Abstract:
A analyte species separation system including a fluid flow field disposed between confining surfaces, the flow field having a first flow component flowing in a first direction and a second flow component flowing in a second, transverse, direction, and an electric field configured to cause analyte species to move in the separation flow field at least in a direction opposite to the first flow component, a analyte injection channel in fluid communication with the flow field and an analyte separation target channel or otherwise a collector in fluid communication with the flow field, the system configure so that an analyte species in an analyte sample injected into the flow field traverses at least a portion of the flow field toward the collector target channel with said second flow component, enabling analyte species separation parallel to the first direction and movement in the second direction so that analyte species having mobilities outside a selected mobility range do not enter the target channel and/or an analyte species having a selected mobility is directed into the target channel.