OPTICAL FREQUENCY CALIBRATION METHOD
    1.
    发明申请
    OPTICAL FREQUENCY CALIBRATION METHOD 审中-公开
    光学频率校准方法

    公开(公告)号:US20160084715A1

    公开(公告)日:2016-03-24

    申请号:US14786008

    申请日:2014-04-18

    Inventor: Yuichiro Hori

    Abstract: A method of calibrating an optical frequency of light emitted from a wavelength-swept light source thereby allowing it to compensate for an error of a wavelength includes performing a first process of measuring an optical frequency range of the emitted light while changing a control parameter associated with an optical frequency sweeping mechanism and determining a correspondence between the control parameter and the optical frequency range, performing a second process of measuring a maximum of a gain of an active medium included in the wavelength-swept light source and determining a correspondence between the maximum of the gain and the control parameter, performing a third process of determining a relationship between the optical frequency range of the emitted light and the control parameter corresponding to the maximum gain of the active medium, and performing a fourth process of adjusting the control parameter based on the determined relationship.

    Abstract translation: 校准从波长扫描光源发射的光的光频率从而允许其补偿波长误差的方法包括执行测量发射光的光频率范围的第一过程,同时改变与 光频扫描机构,确定控制参数与光频范围之间的对应关系,执行测量包括在波长扫描光源中的有源介质的增益的最大值的第二过程,并确定最大值 增益和控制参数,执行确定发射光的光频率范围与对应于活动介质的最大增益的控制参数之间的关系的第三处理,并且基于以下步骤执行调整控制参数的第四处理: 确定的关系。

    Method and apparatus for high resolution monitoring of optical signals
    2.
    发明授权
    Method and apparatus for high resolution monitoring of optical signals 有权
    用于光信号高分辨率监测的方法和装置

    公开(公告)号:US06687009B2

    公开(公告)日:2004-02-03

    申请号:US10266574

    申请日:2002-10-09

    Abstract: The present invention provides a method and apparatus for monitoring optical signals with an expanded frequency resolution. The invention permits high-resolution measurements of optical signal spectrums while retaining wide bandwidth operation through appropriate control circuitry. An interferometer having a periodic frequency response formed of equally spaced narrow-band peaks is used to sweep the entire signal spectrum. The interferometer frequency response is incrementally tuned in cycles so that each of its frequency response peaks cyclically scans a particular spectral band of the signal spectrum. During each cycle, the interferometer isolates multiple spectrally resolved portions of the optical signal spectrum where each portion originates from a different spectral band. In this way, a high-resolution measurement of the entire signal spectrum can be obtained. The invention may be network protocol independent and can be incorporated into an optical spectrum analyzer or directly into any optical terminal. The invention can be used for signal spectrum monitoring applications including link quality monitoring (LQM) in optical communications networks to monitor various transmission parameters such as such as carrier wavelengths, optical signal-to-noise ratios (SNR), amplified spontaneous emissions (ASE), noise levels, optical non-linearities or other signal baseband information such as data rates and formats.

    Abstract translation: 本发明提供一种用于以扩大的频率分辨率监测光信号的方法和装置。 本发明允许光信号频谱的高分辨率测量,同时通过适当的控制电路保持宽带宽操作。 使用具有由等间隔的窄带峰值形成的周期性频率响应的干涉仪来扫描整个信号频谱。 干涉仪频率响应以周期递增调谐,使得其每个频率响应峰值对信号频谱的特定谱带进行循环扫描。 在每个周期期间,干涉仪隔离光信号频谱的多个光谱解析部分,其中每个部分来自不同的光谱带。 以这种方式,可以获得整个信号频谱的高分辨率测量。 本发明可以是与网络协议无关的,并且可以并入到光谱分析仪中或直接并入任何光学终端。 本发明可用于信号频谱监测应用,包括光通信网络中的链路质量监测(LQM),以监测各种传输参数,例如载波波长,光信噪比(SNR),放大自发辐射(ASE) ,噪声电平,光学非线性或其他信号基带信息,如数据速率和格式。

    Interferometer with at least one dispersive element

    公开(公告)号:US11988562B2

    公开(公告)日:2024-05-21

    申请号:US17701847

    申请日:2022-03-23

    Inventor: Scott Bloom

    Abstract: An interferometer for use in remote sensing systems includes a beam splitter that separates an input wave into a reflected wave, which travels along a first optical path within an upper interferometer arm, and a transmitted wave, which travels along a second optical path within a lower interferometer arm. The reflected and transmitted waves are subsequently recombined by the beam splitter for imaging onto a sensor. A highly dispersive element is incorporated into at least one of the pair of interferometer arms. Due to anomalous dispersion, a frequency shift in a wave transmitted through a dispersive element changes the optical path length within its corresponding arm. As a result, the recombined wave produces an interference pattern with a measurable phase change that can be utilized to calculate the original frequency shift in the input wave with great precision and potential sub-Hertz sensitivity.

    Method and apparatus for high resolution monitoring of optical signals
    4.
    发明授权
    Method and apparatus for high resolution monitoring of optical signals 有权
    用于光信号高分辨率监测的方法和装置

    公开(公告)号:US06493088B1

    公开(公告)日:2002-12-10

    申请号:US09411649

    申请日:1999-10-04

    Abstract: The present invention provides a method and apparatus for monitoring optical signals with an expand frequency resolution. The invention permits high-resolution measurements of optical signal spectrums while retaining wide bandwidth operation through appropriate control circuitry. An interferometer having a periodic frequency response formed of equally spaced narrow-band peaks is used to sweep the entire signal spectrum. The interferometer frequency response is incrementally tuned in cycles so that each of its frequency response peaks cyclically scans a particular spectral band of the signal spectrum. During each cycle, the interferometer isolates multiple,spectrally resolved portions of the optical signal spectrum where each portion originates frog different spectral band. In this way, a high-resolution measurement of the entire signal spectrum can be obtained. The invention may be network protocol independent and can be incorporated into an optical spectrum analyzer or directly into any optical terminal. The invention can be used for signal spectrum monitoring applications including link quality monitoring (LQM) in optical communications networks to monitor various transmission parameters such as such as carrier wavelengths, optical signal-to-noise ratios (SNR), amplified spontaneous emissions (ASE), noise levels, optical non-linearities or other signal baseband information such as data rates and formats.

    Abstract translation: 本发明提供一种以扩展频率分辨率监视光信号的方法和装置。 本发明允许光信号频谱的高分辨率测量,同时通过适当的控制电路保持宽带宽操作。 使用具有由等间隔的窄带峰值形成的周期性频率响应的干涉仪来扫描整个信号频谱。 干涉仪频率响应以周期递增调谐,使得其每个频率响应峰值对信号频谱的特定谱带进行循环扫描。 在每个周期期间,干涉仪隔离光信号频谱的多个光谱解析部分,其中每个部分起源于青蛙不同的光谱带。 以这种方式,可以获得整个信号频谱的高分辨率测量。 本发明可以是与网络协议无关的,并且可以并入到光谱分析仪中或直接并入任何光学终端。 本发明可用于信号频谱监测应用,包括光通信网络中的链路质量监测(LQM),以监测各种传输参数,例如载波波长,光信噪比(SNR),放大自发辐射(ASE) ,噪声电平,光学非线性或其他信号基带信息,如数据速率和格式。

    Method and apparatus for two-wavelength interferometry with optical
heterodyne processes and use for position or range finding
    5.
    发明授权
    Method and apparatus for two-wavelength interferometry with optical heterodyne processes and use for position or range finding 失效
    用于具有光学外差法的双波长干涉测量的方法和装置,用于位置或测距

    公开(公告)号:US4907886A

    公开(公告)日:1990-03-13

    申请号:US297866

    申请日:1989-02-06

    Applicant: Rene Dandliker

    Inventor: Rene Dandliker

    Abstract: An apparatus for measuring changes in a variable interference section of an interferometer comprises a laser source for producing beams of the frequency n.sub.1 and the frequency n.sub.2, polarizing beam splitters for producing cross-polarized partial beams of frequency n.sub.1 or n.sub.2, modulators for displacing the frequency of one of the partial beams by frequency f.sub.1 or f.sub.2, a pair of deflecting mirrors in each case and polarizing beam splitters for combining the partial beam n.sub.1, n.sub.1 +f.sub.1, n.sub.2, n.sub.2 +f.sub.2. The apparatus further includes two photodetectors, upstream of which are arranged a polarizer, a Michelson interferometer, a non-polarizing beam splitter for splitting the partial beams in each case into a measuring light beam or a reference light beam. The reference light beam passes to an associated photodetector. The measuring light beam passes into the Michelson interferometer and then to the associated photodetector. The signals of the photodetectors are demodulated according to the amplitude and the phase difference between the two demodulated signals is determined. This phase difference is only dependent on the position of a measurement object and the equivalent wavelength of the difference n.sub.1 -n.sub.2. A method for measuring changes by determining positions or distances is performed by the apparatus.

    Abstract translation: PCT No.PCT / CH88 / 00070 Sec。 371日期1989年2月6日 102(e)日期1989年2月6日PCT PCT 3月30日PCT公布。 第WO88 / 08519号公报 用于测量干涉仪的可变干涉部分的变化的装置包括用于产生频率n1和频率n2的光束的激光源,用于产生频率为n1的交叉偏振分光束的偏振分束器或 n2,用于通过频率f1或f2移位部分光束中的一个的频率的调制器,每种情况下的一对偏转镜和用于组合部分光束n1,n1 + f1,n2,n2 + f2的偏振光束分离器。 该装置还包括两个光电检测器,其上游设置有偏振器,迈克尔逊干涉仪,用于将每个情况下的部分光束分成测量光束或参考光束的非偏振分束器。 参考光束传递到相关联的光电检测器。 测量光束进入迈克尔逊干涉仪,然后进入相关的光电检测器。 光电探测器的信号根据振幅进行解调,确定两个解调信号之间的相位差。 该相位差仅取决于测量对象的位置和差值n1-n2的等效波长。 通过确定位置或距离来测量变化的方法由该装置执行。

    SPATIAL-DOMAIN LOW-COHERENCE QUANTITATIVE PHASE MICROSCOPY
    7.
    发明申请
    SPATIAL-DOMAIN LOW-COHERENCE QUANTITATIVE PHASE MICROSCOPY 审中-公开
    空域低相位定量相位显微镜

    公开(公告)号:US20150204728A1

    公开(公告)日:2015-07-23

    申请号:US14562092

    申请日:2014-12-05

    Abstract: Systems, methods and other embodiments associated with spatial-domain Low-coherence Quantitative Phase Microscopy (SL-QPM) are described herein. SL-QPM can detect structural alterations within cell nuclei with nanoscale sensitivity (0.9 nm) (or nuclear nano-morphology) for “nano-pathological diagnosis” of cancer. SL-QPM uses original, unmodified cytology and histology specimens prepared with standard clinical protocols and stains. SL-QPM can easily integrate in existing clinical pathology laboratories. Results quantified the spatial distribution of optical path length or refractive index in individual nuclei with nanoscale sensitivity, which could be applied to studying nuclear nano-morphology as cancer progresses. The nuclear nano-morphology derived from SL-QPM offers significant diagnostic value in clinical care and subcellular mechanistic insights for basic and translational research. Techniques that provide for depth selective investigation of nuclear and other cellular features are disclosed.

    Abstract translation: 本文描述了与空间域低相干定量相位显微镜(SL-QPM)相关联的系统,方法和其它实施例。 SL-QPM可以检测细胞核内的结构变化,具有纳米级灵敏度(0.9 nm)(或核纳米形态),用于癌症的“纳米病理诊断”。 SL-QPM使用原始,未修改的细胞学和组织学标本,用标准临床方案和污渍制备。 SL-QPM可以轻松整合到现有的临床病理实验室。 结果量化了具有纳米尺度敏感性的单个核中光程长度或折射率的空间分布,可用于研究核纳米形态作为癌症进展。 来自SL-QPM的核纳米形态为临床护理和亚细胞机械学基础和翻译研究提供了显着的诊断价值。 公开了提供对核和其他蜂窝特征的深度选择性研究的技术。

    Method and apparatus for high resolution monitoring of optical signals
    8.
    发明申请
    Method and apparatus for high resolution monitoring of optical signals 有权
    用于光信号高分辨率监测的方法和装置

    公开(公告)号:US20030025912A1

    公开(公告)日:2003-02-06

    申请号:US10266574

    申请日:2002-10-09

    Abstract: The present invention provides a method and apparatus for monitoring optical signals with an expanded frequency resolution. The invention permits high-resolution measurements of optical signal spectrums while retaining wide bandwidth operation through appropriate control circuitry. An interferometer having a periodic frequency response formed of equally spaced narrow-band peaks is used to sweep the entire signal spectrum. The interferometer frequency response is incrementally tuned in cycles so that each of its frequency response peaks cyclically scans a particular spectral band of the signal spectrum. During each cycle, the interferometer isolates multiple spectrally resolved portions of the optical signal spectrum where each portion originates from a different spectral band. In this way, a high-resolution measurement of the entire signal spectrum can be obtained. The invention may be network protocol independent and can be incorporated into an optical spectrum analyzer or directly into any optical terminal. The invention can be used for signal spectrum monitoring applications including link quality monitoring (LQM) in optical communications networks to monitor various transmission parameters such as such as carrier wavelengths, optical signal-to-noise ratios (SNR), amplified spontaneous emissions (ASE), noise levels, optical non-linearities or other signal baseband information such as data rates and formats.

    Abstract translation: 本发明提供一种用于以扩大的频率分辨率监测光信号的方法和装置。 本发明允许光信号频谱的高分辨率测量,同时通过适当的控制电路保持宽带宽操作。 使用具有由等间隔的窄带峰值形成的周期性频率响应的干涉仪来扫描整个信号频谱。 干涉仪频率响应以周期递增调谐,使得其每个频率响应峰值对信号频谱的特定谱带进行循环扫描。 在每个周期期间,干涉仪隔离光信号频谱的多个光谱解析部分,其中每个部分来自不同的光谱带。 以这种方式,可以获得整个信号频谱的高分辨率测量。 本发明可以是与网络协议无关的,并且可以并入到光谱分析仪中或直接并入任何光学终端。 本发明可用于信号频谱监测应用,包括光通信网络中的链路质量监测(LQM),以监测各种传输参数,例如载波波长,光信噪比(SNR),放大自发辐射(ASE) ,噪声电平,光学非线性或其他信号基带信息,如数据速率和格式。

    Digital pulse counting method for measuring the optical path difference
of an imbalanced interferometer
    9.
    发明授权
    Digital pulse counting method for measuring the optical path difference of an imbalanced interferometer 失效
    用于测量不平衡干涉仪的光程差的数字脉冲计数方法

    公开(公告)号:US5066128A

    公开(公告)日:1991-11-19

    申请号:US499798

    申请日:1990-03-27

    Applicant: Zhuo-Jun Lu

    Inventor: Zhuo-Jun Lu

    CPC classification number: G01J9/02 G01J2009/0253

    Abstract: The interferometer is fed by a laser whose wavelength is modulated. The frequency of the optical fringes generated by modulating the wavelength of the laser are measured. Preferably, the measurement of the frequency is carried out by counting pulses. A system for carrying out the method includes a pulse counter circuit.

    Abstract translation: 干涉仪由其波长被调制的激光器馈送。 测量通过调制激光波长产生的光边的频率。 优选地,通过计数脉冲来进行频率的测量。 用于执行该方法的系统包括脉冲计数器电路。

Patent Agency Ranking