Abstract:
There is provided an absolute encoder advantageous in accuracy of an output thereof against a defect in a scale thereof. In the absolute encoder, a detector detects a part of an array of marks of the scale, and outputs a data sequence corresponding to the part. A processor stores information indicating a correspondence between each of a plurality of code sequences and an absolute coordinate of motion of the scale, and outputs information of the absolute coordinate based on the data sequence and the information. The processor detects an error of the data sequence, and performs rewriting of the information based on the detected error.
Abstract:
An absolute encoder includes a scale having a sequence of marks, a detector configured to detect a signal corresponding to a plurality of marks of the scale, and a processor configured to obtain an absolute position corresponding to the signal. The processor is configured to select code sequences, from a group of code sequences corresponding to absolute positions, as a candidate group for a code sequence corresponding to the signal, and to select the code sequence corresponding to the signal from the candidate group.
Abstract:
Disclosed is a technique for compensating for an abnormal output of a resolver. More specifically, a central processing unit (CPU) sets a current motor position angle before compensation θn,ORG as a current motor position angle θn and obtains a motor position change Δθn[rad] between a current sampling [n] and a previous sampling [n−1] and a motor position change Δθn-1[rad] between the previous sampling [n−1] and a more previous sampling [n−2]. Subsequently, a variable A is calculated based on the above angles. The CPU determines whether to perform the compensation by comparing the calculated variable A and a calibration variable K and calculates a current motor position angle for compensation θn[rad]. Finally, the CPU compensates for the absence of motor rotor position information with the calculated current motor position angle for compensation θn[rad].
Abstract:
The invention relates to a capacitive angle encoder for detecting a rotational position of a rotatable object relative to a stationary object as well as a withdrawable feeder for circuit board component insertion machines, said withdrawable feeder being equipped with an angle encoder according to the invention. The angle encoder comprises a stator that supports first and second transmitting electrodes and first and second receiving electrodes, and a rotor which supports an incremental coupling electrode and an absolute value-coupling electrode. The incremental coupling electrode is designed such that the first electrostatic field is modulated by a change in capacitance in response to a change in the rotational position of the rotor, while the absolute value-coupling electrode is designed such that the second electrostatic field is modulated by a change in capacitance in response to an absolute rotational position of the rotor. A signal processing circuit detects the first and second modulated electrostatic field and determines a measured value for the position in response to the detected field. The at least one first and second transmitting electrode and the at least one first and second receiving electrode are coplanar to one another.
Abstract:
A one-dimension position measurement system includes: a first ruler having a first one-dimension binary code si applied thereon, a camera for acquiring a picture of a portion of the code si, the portion having a length of I bits, and some processing elements. Each codeword of length I of the one-dimension code si is unique within the whole code si A codeword ai is read from the acquired picture, and the processing elements are implemented for computing an absolute position p of the codeword ai of the code si from: (I). An adhoc interpolation method is used to obtain a precision way below the distance between two bits of the codewords. The code si may be applied on the ruler by using some geometric primitives, a geometric primitive for encoding a “1” being different from a geometric primitive for encoding a “0”, both having the same horizontal projection. The horizontal projection is then used for fine interpolation, achieving nanometre-scale resolution.
Abstract:
An absolute angle coding that includes a first cyclically continued code sequence that cyclically continues a first code sequence a multiple number of times, wherein the first code sequence is disposed within 360° and includes a first succession of code elements that defines a first angle sector. The code further includes a second cyclically continued code sequence that cyclically continues a second code sequence a multiple number of times, wherein the second code sequence is disposed within 360° and includes a second succession of code elements that defines a second angle sector, wherein the first cyclically continued sequence and the second cyclically continued code sequence in combination unambiguously absolutely encode the 360°. The first angle sector is not equal to the second angle sector, and at least one of the second code sequences of the second cyclically continued code sequence is embodied only partially within said 360° and with a succeeding second code sequence forms a joint.
Abstract:
A position of a sensing head, which contains at least one sensor, is measured with respect to a scale embodiment which contains a linear code. The measurement is performed such that a predefined resolution is achieved. Firstly, an absolute value of an initial position is determined with at least the predefined resolution, for example by evaluating the signals from all the sensors at a standstill. During the measurement, the sensing head and the scale embodiment are moved relative to each other. Fewer sensors are used than would be needed at a standstill, for example, only a single sensor is used. The information needed to achieve the predefined resolution is obtained from sensor signals of the relative movement, which are derived from the linear code. In this way, a signal for the absolute position and the number of revolutions is determined, even at high speeds. The limits set by signal processing and signal transmission are much higher than in the case of known measurement transmitters.
Abstract:
It is known that CCD lines can be used to produce fast angle of rotation sensors, where the light distribution controlled by a code disk is measured with a pixel line and converted into corresponding digital values by an analyzer unit. The object of the present invention is to create a position sensor with a high resolution. For this purpose, the invention proposes several measures, such as pulsed operation of the light source and using a digital code for the code element. Advantageous embodiments involve selecting a maximum code and more accurate determination of the approximate position value thus obtained from the resulting digital value. A further improvement in measurement accuracy can be achieved by shifting the code track or several code tracks arranged radially one inside the other.
Abstract:
An absolute position transducer system has two members movable relative to each other and includes a code track transducer and at least one fine wavelength transducer. The code track is arranged to form a sequential pattern of base-N code words, where N is greater than two (i.e., non-binary). Each sequential non-binary code word identifies an absolute position of one member with respect to the other at a first resolution. Alternatively, the code track is arranged to form a pseudo-random non-binary code word pattern. In this case, the transducer system compares a non-binary code word with a look-up table to determine an absolute position of one member with respect to the other at a first resolution. In order to generate a non-binary code word pattern, code track transducer employs different-sized flux disrupters, different-sized flux enhancers, or a combination of flux disrupters and enhancers.
Abstract:
In a length or position measuring system which has an at least locally substantially linear measuring gauge and at least one sensor able to be moved relative to the measuring gauge wherein the measuring gauge includes an incremental track and at least one absolute track and wherein the incremental track and the at least one absolute track have pole pairs arranged in the longitudinal direction of the measuring gauge, it is provided in particular that at least one pole pair of the absolute track is phase-shifted relative to a corresponding pole pair of the incremental track.