Abstract:
Some embodiments of the invention provide a dart that contains an HE payload, two time-delay fuses, one providing a relatively longer delay and the other providing a relatively shorter delay and two triggering mechanisms for triggering the fuses. The first triggering mechanism, which triggers on contact with a mine lid, triggers the relatively shorter time-delay fuse. The second mechanism, which triggers on overburdening exposure to water, sand, or soil, triggers the relatively longer time-delay fuse.
Abstract:
An exemplary self-destruct fuze delay for a submunition includes a container filled with an activation fluid, a spring-loaded ampoule breaker to break the container upon deployment of the munition, a spring-loaded self-destruct firing pin to initiate a secondary detonator in close proximity to a primary detonator, and an interlock ball supported by the ampoule breaker that locks the self-destruct firing pin away from the secondary detonator. The ampoule breaker includes a piston and a timing ball, which accesses the activation liquid. The action of the activation liquid on the timing ball over time causes the timing ball to erode until it is forced into the container by the spring-loaded piston. The movement of the piston frees the interlock ball, allowing the spring-loaded self-destruct firing pin to move under force and impact or initiate the secondary detonator. Initiation of the secondary detonator destroys the primary detonator and, depending upon slide location, either sterilizes the submunition, or destroys the entire submunition.
Abstract:
Some embodiments of the invention provide a dart that contains an HE payload, two time-delay fuses, one providing a relatively longer delay and the other providing a relatively shorter delay and two triggering mechanisms for triggering the fuses. The first triggering mechanism, which triggers on contact with a mine lid, triggers the relatively shorter time-delay fuse. The second mechanism, which triggers on overburdening exposure to water, sand, or soil, triggers the relatively longer time-delay fuse.
Abstract:
A mechanical system for self-destruction of a munition, in particular a carrier shell submunition, is provided in a munition having a warhead initiated by a pyrotechnic sequence, a main striker and a priming device composed of a slide movable between a safety position and an armed position and which has a device for priming the charge. The self destruction system includes a secondary striker mounted inside a receptacle of a slide and a control device to release the secondary striker after a preset delay. Secondary striker is integral with a holding element and held abutting a seat by the urging of an arming spring. The control device of the secondary striker has a corrosive agent designed to chemically attack the holding element to release it from its seat. When the holding element is released, secondary striker is translationally moved to contact the detonator to destroy the munition.
Abstract:
The fuse comprises a first striker member which is movable within the body of the fuse and is able to come into contact with a detonator to cause it to explode, and a slide which is movable in a direction substantially orthogonal to that in which the striker member is movable and which carries the detonator; within the said slide there is disposed a second striker member which is movable from a first position, in which it elastically deforms a spring and is held at a predetermined distance from the detonator, to a second position in which it comes into contact with the detonator to cause it to explode, the movement of the second striker member being delayed by delay means operable to allow the movement of the striker member itself from the first-defined first to the second position only after a predetermined time.
Abstract:
An exemplary self-destruct fuze delay for a submuntion includes an ampoule filled with an activation fluid, a spring-loaded pin to break the ampoule upon deployment of the munition, and a wick to collect and retain the activation liquid in contact with a spring loaded restraining link having an embedded firing pin. The activation liquid contacts the restraining link, preferably via the wick. The action of the activation liquid on the restraining link over time causes the link to fail at the predetermined location, allowing a severed portion with the embedded firing pin to move under force (e.g., spring, gas) and impact or initiate a secondary detonator. The secondary detonator is in close proximity to a primary detonator typically used to initiate a main charge of the submunition. Initiation of the secondary detonator destroys the primary detonator and, depending upon slide location, either sterilizes the submunition, or destroys the entire submunition.
Abstract:
A water activated battery initiated electrolytic timing device for controlling the delay period prior to flooding of a mine incorporating the flooding assembly. The electrolytic timer incorporates a valve actuation device for establishing fluid communication between a body of water external thereto and the interiormost chamber of the flooder assembly.
Abstract:
An exemplary self-destruct fuze delay for a submuntion includes a container filled with an activation fluid, a spring-loaded ampoule breaker to break the container upon deployment of the munition, a spring-loaded self-destruct firing pin to initiate a secondary detonator in close proximity to a primary detonator, and an interlock ball supported by the ampoule breaker that locks the self-destruct firing pin away from the secondary detonator. The ampoule breaker includes a piston and a timing ball, which accesses the activation liquid. The action of the activation liquid on the timing ball over time causes the timing ball to erode until it is forced into the container by the spring-loaded piston. The movement of the piston frees the interlock ball, allowing the spring-loaded self-destruct firing pin to move under force and impact or initiate the secondary detonator. Initiation of the secondary detonator destroys the primary detonator and, depending upon slide location, either sterilizes the submunition, or destroys the entire submunition.