Abstract:
A fully automated, integrated, end-to-end synchronized and compact manufacturing system produces polymer or metal case ammunition. Manufacturing stations support case assembly, sealing (gluing/welding), final product inspection, cartridge packaging or binning, and loading. Station modularity facilitates rapid changeover to accommodate ammunition of differing calibers. Sensors and apparatus may be provided to place a manufacturing cell in a wait state until all components or materials are received in a preferred orientation for proper assembly. The system may join and use multipart cases, each including a lower portion with a head end attached thereto and at least one upper portion having a necked-down transition to the open top end. Elevator feeders, vibratory bowl feeders, and robotic pick-and-place feeders may be used to deliver components for assembly.
Abstract:
Apparatus and methods for manufacturing subsonic ammunition articles from conventional supersonic ammunition articles are provided. The apparatus includes devices for controllably introducing a filler material to reduce the inner volume of a conventional supersonic ammunition article. Method are also provided for converting a conventional supersonic ammunition article to a subsonic ammunition article including defining a new subsonic propellant volume within said conventional supersonic ammunition article and controllably introducing a filler material therearound.
Abstract:
Two methods of making subsonic ammunition articles are provided that size the cavity to the propellant charge. The first method includes molding a core sleeve comprised of a unified neck, cavity sized to the propellant charge volume and a trailing end with an ejector ring, primer seat and flash hole; then, molding a polymer based casing over the core sleeve except the neck and a portion of the trailing end; then, inserting the primer, propellant charge and projectile; thereby, completing a subsonic ammunition article with a rigid core and a polymer casing. The second method includes injection molding a polymer sleeve within the casing of an ammunition article around a core pull positioned within the casing to form a thicker casing wall and a propellant cavity the volume of which corresponds to a desired propellant charge.
Abstract:
Among other things, a digitally controlled actuator has a connector for coupling to a drive mechanism of an existing hand-driven cartridge reloader, to actuate a series of processing cycles of the reloader in which supplies of components are subjected to successive mechanical processing steps to produce reloaded cartridges ready for use. There are sensors associated with the actuator and the reloader to (a) acquire digital information that is indicative of a state of progress of each of the processing cycles and of conditions of the reloader related to the production of the reloaded cartridges, and (b) deliver the digital information to a digital controller for controlling the processing cycles of the reloader. The digital controller is connected to receive the digital information from the sensors and to control automatic operation of the reloader in successive processing cycles to produce reloaded cartridges without requiring human intervention.
Abstract:
A method is provided for producing a large-calibre explosive projectile having a projectile casing with an ogival front part, which surrounds an internal area filled with a plastic-bonded explosive charge and, at a nose end, has a mouth closed by a nose fuze, wherein an elastic liner is arranged between the explosive charge and the inner wall of the projectile casing. The projectile casing is produced in two parts, such that, in the direction of the longitudinal axis of the projectile casing, a tail-end projectile casing section and an annular front projectile casing section, which contains the mouth, can be connected to one another in the area of the ogival front part, via a screw connection. The liner is introduced into the tail-end projectile casing section and the explosive charge is introduced into the liner before the two projectile casing sections are connected to one another.
Abstract:
Secondary crystalline high explosives are disclosed which are suitable for filling very small volume loading holes in micro-electric initiators for micro-electro-mechanical mechanisms (MEMS), used as safe and arm (S&A) devices. The explosives are prepared by adding the such a high explosive to an aqueous first volatile mobile phase, adding such a high explosive to a non-aqueous second volatile mobile phase, mixing the first and second volatile mobile phases and then loading the combined phases into the MEMS device and allowing the aqueous and non-aqueous solvents to evaporate depositing the high explosive. Enhanced adhesion between the deposited high explosive and enhanced rheological properties can be obtained by adding a polymeric binder to both mobile phases.
Abstract:
This invention relates to a MEMS detonator, in particular the production of MEMS scale detonators via the use of a microreactor (3). The invention further lies in a reproducible manufacturing method of MEMS scale detonators, for use in safety and arming units (SAU), which are used in warheads and munitions. A warhead comprising a MEMS detonator may find particular use in increasing the IM compliance of munitions. The method involves the use of high pressure input of two solutions (2, 2a) into a microreactor (3) to form an in-situ precipitation reaction, which furnishes an initiatory (i.e. primary) explosive, wherein the explosive and supernatant liquid is directly fed into a microchamber, using the microcavities in the septum as a MEMS sieve to retain the explosive and form a MEMS detonator.
Abstract:
Secondary crystalline high explosives are disclosed which are suitable for filling very small volume loading holes in micro-electric initiators for micro-electro-mechanical mechanisms (MEMS), used as safe and arm (S&A) devices. The explosives are prepared by adding the such a high explosive to an aqueous first volatile mobile phase, adding such a high explosive to a non-aqueous second volatile mobile phase, mixing the first and second volatile mobile phases and then loading the combined phases into the MEMS device and allowing the aqueous and non-aqueous solvents to evaporate depositing the high explosive. Enhanced adhesion between the deposited high explosive and enhanced rheological properties can be obtained by adding a polymeric binder to both mobile phases.
Abstract:
A powder meter tube includes a metering tube and a metering assembly. The metering assembly is retained in the metering tube. The metering tube includes a nut cutout and a graduated slot. The metering assembly includes a threaded shaft, a micrometer nut, a piston and a bearing. A threaded hole is formed through the micrometer nut to threadably receive the threaded shaft. The bearing includes a base and two spring fingers that extend from the base. The piston is pressed on to one end of the threaded shaft and the bearing pressed on to an opposite end of the threaded shaft. The spring fingers allow the metering assembly to be inserted into the metering tube and the micrometer nut to protrude through the nut cutout. In use, the micrometer nut is rotated in either direction to increase or decrease the powder capacity in the metering tube.
Abstract:
The present invention provides a method of charging at least one container, such as a tube, with an energetic material. The method comprises the step of reducing a pressure of a fluid in an interior portion of the or each container. The method also comprises the step of positioning the energetic material at a position that is exterior to the or each container and at which a pressure is higher than in the interior portion of the or each container in a manner such that a suction results which sucks the energetic material into the interior portion of the or each container and thereby charges the or each container with the energetic material.