Abstract:
A system and method for a semi-active laser seeker combining a temporal and a spatial sensor to form a seeker with a wide angle FOV and low angle error for use with spinning projectiles with spin rates of up to 300 Hz. The FOV is about 40 degrees and the angle error is less than 0.1 degrees. The seeker utilizes a CCA and fits into a small, low cost package, of about 1.5 in3 or less.
Abstract:
A guided munition (e.g., a mortar round or a grenade) utilizes deployable flow effectors, activatable flow effectors and/or active flow control devices to extend the range and enhance the precision of traditional unguided munitions without increasing the charge needed for launch. Sensors such as accelerometers, magnetometers, IR sensors, rate gyros, and motor controller sensors feed signals into a controller which then actuates or deploys the flow effectors/flow control devices to achieve the enhanced characteristics.
Abstract:
Arbitrarily deploying scanning polarized RF reference sources and using them to establish a full position and angular orientation reference coordinate system or a full angular orientation reference coordinate system that objects property equipped with polarized RF sensors could use to determine their angular position and/or orientation relative to the reference coordinate system.
Abstract:
A system and method for determining the roll rate and roll angle of a spinning platform by using the measured phase and/or amplitude differences between the GPS satellite signals received on two or more antennas. The measured signal differences and the navigation solution from a GPS receiver are processed in a roll filter to obtain the desired information. Data from non-GPS measurement sources is optionally provided to update the navigation solution. Although of wide applicability, the invention is uniquely suited to the measurement of roll rates and roll angles of fast spinning platforms with small baselines in the presence as well as in the absence of jamming, and where the antennas are separated from each other by distances that are a fraction of the GPS signal wavelength.
Abstract:
A method and system for guiding and controlling an ordinance body having a trajectory and a bore sight angle including making corrections to the trajectory based on bore sight angle vs. time history. The system is incorporated with existing fuse components in a replacement kit for existing munitions. The method determines nominal time values of the ballistic trajectory of the munition in relation to launch time and determines deviation from the nominal time values by an algorithm by analyzing signals received from a source of radiation located at the target. A processor determines lateral (left/right) and range errors and provides steering commands to a plurality of flight control surfaces mounted on the munition.
Abstract:
A guidance seeker system for a projectile includes a plurality of photoconductive sensing elements symmetrically disposed about a central axis of the projectile. When a target is illuminated with a light source, a lens transmits light reflected from the target to one or more of the photoconductive sensing elements. Dependent on which photoconductive sensing element is irradiated, a variance between the line of flight of the projectile and the target is determined. A voltage impulse resulting from irradiation of the photoconductive sensing element triggers actuation of a course corrector, such as a diverter, to nudge the line of flight of the projectile to increase the likelihood of the projectile reaching the desired target. This guidance seeking system is particularly effective when the target is designated with a pulsed laser.
Abstract:
A system for guiding projectiles to a target. More particularly, a system for the guidance of projectiles toward a target using a photo detector array (18) and an arrangement of single use thrusters (22). The system is capable of guiding projectile to targets after firing from extended distances.
Abstract:
A guidance seeker system for a projectile includes a plurality of photoconductive sensing elements symmetrically disposed about a central axis of the projectile. When a target is illuminated with a light source, a lens transmits light reflected from the target to one or more of the photoconductive sensing elements. Dependent on which photoconductive sensing element is irradiated, a variance between the line of flight of the projectile and the target is determined. A voltage impulse resulting from irradiation of the photoconductive sensing element triggers actuation of a course corrector, such as a diverter, to nudge the line of flight of the projectile to increase the likelihood of the projectile reaching the desired target. This guidance seeking system is particularly effective when the target is designated with a pulsed laser.
Abstract:
A system and method for determining the angular orientation of a body moving in object space. The invention is usable to detect and identify the angular orientation of the body relative to the theoretical plane of gravity and thereby relative to any other theoretical plane between zero and three-hundred sixty degrees therefrom. The invention is operable regardless of whether the body is rotating with an angular velocity, either natural and/or induced. The invention may employ one or more analog and/or digital sensors. The analog sensor may be an accelerometer. The system may be used to provide real-time orientation data to permit the body to be guided or directed towards a desired destination or simply to permit the orientation of the body to be known, controlled or varied as desired.
Abstract:
A spin-stabilized projectile for destroying distant targets uses the projectile's spin to carry out other functions such as target imaging, course-correction and warhead aiming. By using the spin to carry out such functions, in addition to stabilization, the projectile can be implemented with fewer or no moving parts. The projectile may utilize either right or skewed-core fusing for the warhead.