Abstract:
An air conditioner includes a heat storage apparatus for storing heat emitted from a compressor arranged in an outdoor unit, wherein the heat storage apparatus includes a heat storage tank installed in the compressor for storing heat emitted from the compressor and a heat transfer member configured to deliver heat emitted from the compressor to the heat storage tank, wherein the heat storage tank includes a first heat transfer face configured to have a form corresponding to a part of an outer circumferential face of the compressor to come into contact with the outer circumferential face of the compressor and a pair of second heat transfer faces configured to extend from both ends of the first heat transfer face to be in parallel to each other and form space with the outer circumferential face of the compressor, and wherein the heat transfer member is arranged in the space.
Abstract:
An air conditioner including a hot gas line for receiving a portion of refrigerant compressed in a compressor, an indoor heat exchanger, an outdoor expansion device for expanding the refrigerant having exchanged heat in the indoor heat exchanger, an outdoor heat exchanger functioning as a condenser in a cooling mode while functioning as an evaporator in a heating mode, and a 4-way valve for receiving a remaining portion of the compressed refrigerant, to guide the refrigerant emerging from the compressor to the outdoor heat exchanger in the cooling mode and to the indoor heat exchanger in the heating mode. The outdoor heat exchanger includes a main heat exchanger section functioning as a condenser in the cooling mode while functioning as an evaporator in the heating mode, and an auxiliary heat exchanger for receiving the refrigerant from the hot gas line in a frosting prevention mode.
Abstract:
A heat-source-side unit includes a body case having an air inlet and an air outlet, a heat exchanger contained in the body case and disposed to an air passage between the air inlet and the air outlet, and a damper disposed above the heat exchanger and configured to open and close the air passage. The damper is closed in a defrosting operation that removes frost on the heat exchanger.
Abstract:
An air-conditioning apparatus includes a refrigerant circuit, an air-conditioning load state detection unit, an operation-state detection unit, and a controller. The refrigerant circuit includes a main circuit and a bypass circuit. The air-conditioning apparatus has a simultaneous heating and defrosting operation mode. In the simultaneous heating and defrosting operation mode, the controller controls a compressor, a pressure reducing device, and a defrosting refrigerant pressure-reducing device such that control amounts of the compressor, the pressure reducing device, and the defrosting refrigerant pressure-reducing device reach respective normal-time control target values that are set based on an air-conditioning load state and an operation state.
Abstract:
An air-conditioning apparatus divides an outdoor heat exchanger to form parallel heat exchangers and supplies part of refrigerant from a compressor to the parallel heat exchangers alternately to perform defrosting, performs medium-pressure defrosting in which part of the refrigerant from the compressor is decompressed and supplied to a parallel heat exchanger to be subjected to defrosting, and the refrigerant after being used for defrosting is injected into the compressor. A first flow switching unit performs switching of a connection mode of ends of the parallel heat exchangers on compressor side, where the pressure changes among high pressure, medium pressure, and low pressure according to operation contents, to one of three modes: a mode with the ends connected to the compressor discharge side, a mode with the ends connected to the compressor suction side, and a mode with the ends connected to neither the discharge nor suction side.
Abstract:
An improved refrigeration cycle defrosting system and method is disclosed. The device uses operation of a compressor to supply heat for the defrosting process without relying on deviation of a hot refrigerant gas from the compressor outlet or any other heating device.
Abstract:
An air-conditioning apparatus divides an outdoor heat exchanger to form parallel heat exchangers and supplies part of refrigerant from a compressor to the parallel heat exchangers alternately to perform defrosting, performs medium-pressure defrosting in which part of the refrigerant from the compressor is decompressed and supplied to a parallel heat exchanger to be subjected to defrosting, and the refrigerant after being used for defrosting is injected into the compressor. A first flow switching unit performs switching of a connection mode of ends of the parallel heat exchangers on compressor side, where the pressure changes among high pressure, medium pressure, and low pressure according to operation contents, to one of three modes: a mode with the ends connected to the compressor discharge side, a mode with the ends connected to the compressor suction side, and a mode with the ends connected to neither the discharge nor suction side.
Abstract:
An air conditioner which controls capacity of an outdoor heat-exchanger unit without an on-off valve that exhibits high pressure loss, which prevents accumulation of refrigerant in an outdoor heat-exchanger, and which maintains reliability of a compressor or refrigeration cycle. The air conditioner includes a first expansion valve on a liquid line of a first outdoor heat- exchanger, a second expansion valve on a liquid line of a second outdoor heat-exchanger, a first connection line to connect a suction line to one port of the first 4-way valve, the suction line connecting a suction port of the compressor and an indoor heat-exchanger unit, a second connection line to connect the suction line to one port of the second 4-way valve, and a check valve provided on the second connection line to allow flow of refrigerant only from the second 4-way valve to the suction line.
Abstract:
Heat pump equipment comprising at least three heat exchangers, one of which is intended to be located in an enclosed region and the other two of which are intended to be located outside the enclosed region. Each heat exchanger has a delta connection end connected in heat-exchange fluid communication with a delta arrangement. The delta connection end of each heat exchanger is connected to both of the delta connection ends of the other two heat exchangers via the delta arrangement. There are three fluid-expansion devices, one between the two connections of each pair of adjacent connections of the heat exchangers to the delta arrangement. The present invention extends to heat pump equipment comprising at least three heat exchangers connected in a heat-exchange fluid circuit, one of which heat exchangers is intended to be located in an enclosed region and another of which is intended to be located outside the enclosed region. A third one of the heat exchangers is arranged so that air which flows through an aperture in a wall which forms a boundary of the enclosed region passes over the said third heat exchanger.
Abstract:
An outdoor unit, connected with indoor units by pipes to constitute a refrigerant circuit, includes a compressor configured to compress and discharge refrigerant, a plurality of parallel heat exchangers configured to allow heat exchange between air and the refrigerant, a first defrosting pipe serving as a flow path for branching a part of the refrigerant discharged by the compressor and allowing the refrigerant to flow into the parallel heat exchanger to be defrosted for defrosting, a first expansion device configured to decompress the refrigerant passing through the first defrosting pipe, a second expansion device configured to adjust the pressure of the refrigerant that passed through the parallel heat exchanger to be defrosted, and a controller configured to control the second expansion device such that the pressure of the refrigerant that passed through the parallel heat exchanger to be defrosted falls within a predetermined range.