Abstract:
A valve apparatus includes a valve main body, a shaft body, a first valve element, and a second valve element. The valve main body has a first depressed portion and a second depressed portion in a circular shape, and a first port, a second port, and a third port each communicating with the first depressed portion, and a fourth port and a fifth port each communicating with the second depressed portion. The first port is allowed to selectively communicate with one of the second port and the third port by closure of one of the second port and the third port by the first valve element rotating about an axial direction. A flow amount of a fluid flowing between the fourth port and the fifth port is allowed to be variable by closure of the fourth port by the second valve element rotating about the axial direction.
Abstract:
An outdoor unit control unit 200 has a defrosting operation condition table 300a that defines a defrosting operation interval time Tm in accordance with a total sum of rated capacity of indoor units 5a to 5c and a refrigerant pipe length as lengths of a liquid pipe 8 and a gas pipe 9. The outdoor unit control unit 200 uses the total sum of the rated capacity of indoor units 5a to 5c input by using an installation information input unit 250 and refers to the defrosting operation condition table 300a, so as to determine the defrosting operation interval time Tm. Then, the outdoor unit control unit 200 forcibly performs a defrosting operation when the defrosting operation interval time Tm elapses without establishment of a defrosting operation start condition since the last defrosting operation is terminated.
Abstract:
Temperature control system and method A temperature control system (10) includes a compressor (1), a condenser (4), an expansion valve (5), and an evaporator (60 all connected in series. At least one heat exchanger (3) is located between the compressor and the condenser and operable to transfer heat energy from an external heat source to the refrigerant. In one variant, an array of heat exchangers is located between the compressor and the condenser. In a further variant (210, FIG. 3), there are one or more heat exchangers located between the compressor and the condenser and flow control means to direct the flow of refrigerant either through at least one heat exchanger or directly from the compressor to the condenser bypassing at least one of the heat exchangers. Methods of heating and cooling an environment using the system are also disclosed.
Abstract:
A vehicle air conditioner includes a duct in which a partition member forming a first flow path and a second flow path is provided, and a heat pump circuit. In the heat pump circuit, a first indoor heat exchanger that contributes to heating is located in the first flow path or faces an outlet of the first flow path, and a second indoor heat exchanger that contributes to cooling is located in the second flow path. The duct is provided with at least one heating exhaust port for discharging air cooled in the second indoor heat exchanger to the outside of the vehicle interior in heating operation, and a cooling exhaust port for discharging air heated in the first indoor heat exchanger to the outside of the vehicle interior in cooling operation.
Abstract:
An HVAC system, including a reversing valve including a first port, a second port, and a third port, wherein the reversing valve may be placed into a first position in which the first port is operably coupled to the second port for the flow of refrigerant therebetween, and a second position in which the second port is operably coupled to the third port for the flow of refrigerant therebetween, a first HVAC component operably coupled to the first port, a second HVAC component operably coupled to the second port, and a third HVAC component operably coupled to the third port.
Abstract:
A valve arrangement includes a changeover valve having a housing (7) with at least four connection pieces (8) connected to a heat pump and at least four additional connection pieces (9). At least two of the additional connection pieces are connected to a heat source and at least two of the additional connection pieces are connected to a heat sink. At least one valve body (10) is associated with a drive element for moving the valve body relative to the different connection pieces in the housing. A heat exchanger (2) is connected during heating operation to the source side of the heat pump, in which a flow direction reversal of the heat transfer medium can be generated when there is a changeover between heating operation and cooling operation.
Abstract:
A heat pump system includes a refrigerant circuit, at least one variable speed compressor operating with a maximum pressure ratio of at least 5.0 and a variable speed range of at least three times (3×), a heat absorption heat exchanger, a heat rejection heat exchanger, an ejector disposed on the refrigerant circuit upstream of the compressor to extend a pressure ratio range and a volumetric flow range of the compressor in the cold climates, a separator disposed downstream of the ejector and upstream of the heat absorption heat exchanger, and at least one variable speed fan configured to move air through the heat rejection heat exchanger to provide a predefined an air discharge temperature greater than 90° F. A two-phase refrigerant is provided to an inlet of the heat absorption heat exchanger with a quality of less than or equal to 0.05.
Abstract:
An object is to provide a refrigeration cycle apparatus that does not cause unevenness of capacity among branch units and a failure in controlling a refrigerant circuit. At least one of branch units is a first branch unit having a minimum pressure loss in distribution of refrigerant in a high-pressure refrigerant pipe between a heat source unit and the branch units, and at least another one of the branch units is a second branch unit having a maximum pressure loss in distribution of refrigerant in the high-pressure refrigerant pipe between the heat source unit and the branch units. An opening degree of an expansion device is controlled in such a manner that a differential pressure between a refrigerant pressure detected by a high-pressure detecting device of the first branch unit and a refrigerant pressure detected by an intermediate-pressure detecting device is greater than or equal to a set value ΔPHM.
Abstract:
In an air-conditioning apparatus equipped with an outdoor unit having outdoor devices including a compressor that compresses a refrigerant, a flow switching valve that switches the flowing direction of the refrigerant, an outdoor heat exchanger that exchanges heat between the refrigerant and outdoor air, a first expansion valve that reduces the pressure of the refrigerant, an excess-refrigerant container that retains an excess refrigerant of the refrigerant, and a second expansion valve that reduces the pressure of the refrigerant; and an indoor unit having an indoor heat exchanger that exchanges heat between the refrigerant and indoor air, the air-conditioning apparatus includes an outdoor-heat-exchanger refrigerant injection port provided in a refrigerant pipe that is directly connected to the outdoor heat exchanger, and an excess-refrigerant-container refrigerant injection port provided in a refrigerant pipe that is directly connected to the excess-refrigerant container.
Abstract:
A heat recovery refrigeration device includes a compressor, a plurality of heat source side heat exchangers, and a plurality of usage side heat exchangers. The heat exchangers are switchable between individually functioning as an evaporator or a radiator. The heat recovery refrigeration device performs heat recovery between the usage side heat exchangers by sending the refrigerant from at least one of the usage side heat exchangers functioning as a radiator to at least one of the usage side heat exchangers functioning as an evaporator. The plurality of heat source side heat exchangers include a first heat source side heat exchanger and a second heat source side heat exchanger. The second heat source side heat exchanger has a heat exchange capacity 1.8 times to 4.0 times of the first heat source side heat exchanger.