Abstract:
Systems and methods for integrating photovoltaic (PV) energy into water heater systems are disclosed. The disclosed technology includes determining whether a current water temperature is less than a first PV heat point that is greater than a normal heat point, and if so, outputting instructions for PV energy to be transferred from a PV system to a heating device of the water heater. If the current water temperature falls below a second PV heat point that is less than the normal heat point, the disclosed technology includes outputting instructions for energy to be transferred from a utility system to the heating device.
Abstract:
Provided is a method for adaptively controlling the charging time of a storage heater, comprising: determining a stored energy requirement of the heater; determining a background heat requirement of the heater; determining a daily energy requirement (DER) based on the stored energy requirement and the background heat requirement; and determining a daily run time (DRT) at a predetermined time to calculate the charging time for a following period of time based on the daily energy requirement (DER).
Abstract:
The present invention provides a heat-storage type heater which has a function of compensating a time lag between the generation and emission of heat, and comprises means for supplying heat to a heat-storing material 1 capable of being supercooled, the heat-storing material 1 being filled into a plurality of small containers 2, means 3 for releasing the supercooled state of the heat-storing material, and a thermal radiation surface.
Abstract:
Building plate with controllable heat insulation means comprising two walls which may be moved relatively towards or away from each other by inflatable ducts between the walls to control transfer of heat therebetween when the walls face zones of different temperatures.
Abstract:
A portable electrically operated gas heater for heating gases for use in curing sand molds. An electrical heating element fits tightly inside a bore in a heat exchange tube having sufficient mass for providing a reservoir for storage of a substantial amount of heat. The heat exchange tube is provided with fins on its outside and an inner shell fits around the fins to define a gas heating passage. An insulative outer shell is secured to the outside of the inner shell. An inlet port to the passage is provided for receiving cold gas from a pressurized source through a control valve and an outlet port from the passage is provided for distributing the gas after contact with the heat exchange fins in the passage. An automatic reset timer is connected to the control valve and is operative to open the valve for a predetermined period of time to deliver a burst of gas. Heater control means including a thermostat is provided for controlling the energization of the heating element to maintain a predetermined tempertaure within the gas heating passage. The heater control means is operable independently of the timer for continual energization of the heating element, under control of the thermostat, to store heat in the reservoir prior to delivery of a burst of gas by the timer. This storage of heat permits the use of a lower wattage heating element than would otherwise be necessary in order to instantaneously heat the burst of gas.
Abstract:
A method of charging a heat storage vessel containing a meltable normally solid heat storage mass having a greater density in its solid state than in its liquid state includes (1) applying heat to the bottom end wall of the vessel to melt the mass and (2) concurrently applying heat to a vertical side wall of the vessel to form a thin convection passage extending along a side of the solid storage mass from top to bottom thereof whereby there may be a flow of melted storage mass from the region adjacent the bottom end wall through said convection passage to an expansion space in said vessel above the storage mass.
Abstract:
A water purifier includes a working coil, a hot water tank that faces toward the working coil and is spaced apart from the working coil by a gap to heat a liquid passing through an inner space of the hot water tank by an induction of the working coil, a bracket that is coupled to the hot water tank, the working coil being located between the hot water tank and the bracket, and a spacer that is located between the working coil and the hot water tank to thereby define the gap between the working coil and the hot water tank.