摘要:
A system includes a standpipe for receiving a flow of solids therethrough, the standpipe having at least one inlet configured to receive a gas for decreasing a solids-to-gas ratio of the flow, a sealpot having an inlet fluidly coupled to the standpipe and an outlet fluidly coupled to a riser, the sealpot being configured to fluidize the solids received from the standpipe and to transport the solids to the riser, and a drain device fluidly coupled to an outlet in the standpipe, the outlet being located upstream from the inlet of the sealpot. The drain device is configured to remove the excess gas from the flow of solids within the standpipe to increase the solids-to-gas ratio of the flow prior to the solids entering the sealpot.
摘要:
A dual-bed system for preventing a boiler heating surface from being contaminated comprises a fluidized bed, a cyclone separator, a coal ash distributor, an ash-coal mixer, a lower pyrolysis bed, a return feeder and a cleaner, wherein the cyclone separator is connected with the upper lateral side of the fluidized bed; the inlet end of the coal ash distributor; the two outlets of the coal ash distributor are respectively connected with the inlet of the return feeder and the inlet of the ash-coal mixer; the outlet of the ash-coal mixer is connected with the inlet of the lower pyrolysis bed; the return feeder close to the lower lateral side of the fluidized bed is connected with the inlet on the lower lateral side of the fluidized bed; and the outlet of the cleaner is connected with the inlet on the lower lateral side of the fluidized bed.
摘要:
The invention has its object to arbitrarily adjust an amount of particles to be circulated without changing a flow rate of a gasification agent to thereby enhance gasification efficiency in a fluidized bed gasification furnace.The fluidized bed gasification furnace 107 comprises first and second chambers 113 and 114 in communication with each other in a fluidized bed 105. The hot particles 102 separated in the separator 104 and raw material M are introduced into the first chamber 113. The particles 102 introduced from the first chamber 113 through interior in the fluidized bed 105 to the second chamber 114 are supplied in an overflow manner to the fluidized bed combustion furnace 100. A first pressure controller 121 is provided to control the resultant gas induction means 116 such that the pressure in the first chamber 113 is kept to preset pressure 120; and a second pressure controller 124 is provided to control the exhaust gas induction means 118 such that difference between pressure in the first and second chambers 113 and 114 is equal to the preset differential pressure 123, so that the fluidized bed 105 in the first chamber 113 is controlled in height to control an amount of particles 102 to be circulated.
摘要:
A method for dividing a stream of solids includes discharging the stream of solids via a first downer. The stream of solids are fluidized at a bottom of the first downer by supplying a first conveying gas. By the first conveying gas, a part of the stream of solids are conveyed to a top of a first riser branching off from the first downer. A remaining part of the stream of solids are discharged via a second downer adjoining the first downer. The remaining stream of solids are fluidized at a bottom of the second downer by supplying a second conveying gas. By the second conveying gas, a part of the remaining part of the stream of solids are conveyed to a top of a second riser branching off from the second downer.
摘要:
A loop seal for a fluidized bed reactor comprising a vertical downcomer segment connected to a dipleg for receiving solids particles from the dipleg, a horizontal segment downstream of the downcomer, a riser segment downstream of the horizontal segment, and a downwardly inclined segment downstream of the riser, whereby the solids are entrained to the fluidized bed reactor. An eductor is added to the angled leg to induce the underflow gas from the cyclone; one of the preferred motive fluids to the eductor is the fines from fuel preparation and the carrying gas for the fines. Also provided are a fluidized bed reactor comprising the loop seal, and a method for producing syngas from coal and steam using the same.
摘要:
A pyrolysis apparatus comprises a furnace (1) operating by fluidized bed combustion, a pyrolyzer (4) and flow paths, which connect the furnace (1) and the pyrolyzer (4) for arranging the circulation (C) of carrier material of the fluidized bed combustion between the furnace and the pyrolyzer The apparatus also comprises a supply inlet (14) for supplying fuel to be pyrolyzed to the pyrolyzer (4), fluidizing gas supply means (5) arranged in the pyrolyzer for fluidizing the mixture of carrier material and fuel, and an outlet (6) for taking condensible gaseous substances separated from the fuel to be pyrolyzed out of the pyrolyzer (4), and a condenser for condensing the condensible gaseous substances. The carrier material circulation is arranged at the furnace (1) by a cocurrent principle along the flow path of hot flue gases, which comprises a separator (3) located higher than the pyrolyzer (4), which separator is arranged to separate carrier material from flue gases, while the circulation also comprises a connecting conduit (11) between the separator (3) and the pyrolyzer (4) for moving the carrier material by gravity to the pyrolyzer (4), and a return path (12) between the pyrolyzer (4) and the furnace (1) for returning the carrier material to the furnace (1). The outlet (6) is arranged in the chamber formed by the pyrolyzer (4) in its upper part in a space above the fluidized mixture of carrier material and fuel in order to remove the condensible gaseous substances from the pyrolyzer.
摘要:
A moving bed heat exchanger (155) includes a vessel having an upper portion (200), a lower portion (210) with a floor (272) including a discharge opening therein, and an intermediate portion (205). The vessel directs a gravity flow of hot ash particles (140) received thereby from the upper portion (200) through the intermediate portion (205) to the floor (272) of the lower portion (210) of the vessel, where the hot ash particles (140) are collected. Tubes in the intermediate portion (205) of the vessel direct a flow of working fluid in a direction substantially orthogonal to the direction of the gravity flow of the hot ash particles (140) through the intermediate portion (205) of the vessel such that heat from the hot ash particles (140) is transferred to the working fluid thereby cooling the hot ash particles (140).
摘要:
In order to quantitatively evaluate actual circulation quantity of bed material extremely simply and to enhance accuracy of comparison of results of thermal balance examined through simulation or the like with actual operation results, time is measured which is required for bed material in a downcomer 5 to reach an upper predetermined height H1 from a lower reference height H0 during stopped feeding of fluidizing air to an external heat exchanger 7; a flow rate of the bed material as circulation quantity is determined from the time and an accumulated amount of the bed material based on an inner diameter D of the downcomer 5.
摘要:
The invention relates to a method for operating a fluidized bed boiler, comprising carrying out the combustion process with a fluidized bed comprising ilmenite particles, wherein the average residence time of the ilmenite particles in the boiler is at least 75 hours. The invention further relates to ilmenite particles obtainable by a corresponding method and the use of said ilmenite particles as oxygen-carrying material.
摘要:
A system for converting fuel may include a first moving bed reactor, a second reactor, and a non-mechanical valve. The first moving bed reactor may include at least one tapered section and multiple injection gas ports. The multiple injection gas ports may be configured to deliver a fuel to the first moving bed reactor. The first moving bed reactor may be configured to reduce an oxygen carrying material with a fuel by defining a countercurrent flowpath for the fuel relative to the oxygen carrying material. The second reactor may communicate with the first moving bed reactor and may be operable to receive an oxygen source. The second reactor may be configured to regenerate the reduced oxygen carrying material by oxidation.