Abstract:
A magnetic radial bearing with low eddy current losses is made compact and easily actuable. For this purpose, a radial bearing with four coils (S1, S2, S3, S4) is proposed, said coils lying opposite one another in pairs on two axes (X, Y). The coils are controlled by a three-phase current (U, V and W). The amplitudes of the currents of the phases (U, V and W) are each evaluated using a sine function which is phase-shifted with respect to one another through 120 DEG. The control is performed by a control device at a variable operating point, which fixes the value for the evaluation of the amplitudes for the individual phases corresponding to the respective sine function.
Abstract:
An electromagnetic actuator can exert a radial electromagnetic force on a body that is configured to rotate about a rotational axis. The actuator includes a radial control magnetic pole assembly that includes radial control poles adjacent to and spaced apart by air gaps from the body. The actuator includes a permanent magnet (PM) magnetized along the axis, having one pole in contact with an axial face of the assembly and located proximate to a lateral surface of the body. The PM is magnetically coupled to the body in a non-contact manner resulting in a bias magnetic flux in the air gaps. The actuator includes a control coil around the radial control poles located radially outwards from the PM. Electrical current in the coils generates control magnetic flux in air gaps. The non-uniform net magnetic flux distribution around the body results in a radial electromagnetic force exerted on the body.
Abstract:
A magnetic bearing apparatus supports a rotating object using magnetic levitation by a magnetic force of electromagnets. The magnetic bearing apparatus includes a PWM driver configured to supply exciting currents to the electromagnets, a driver power source configured to drive the PWM driver, and a displacement error signal removing section configured to extract a displacement error signal of the displacement information from a current flowing through the driver power source and to remove the displacement error signal from the displacement information.
Abstract:
A magnetic radial bearing and a bearing system for supporting a rotating shaft are disclosed. The bearing has a number of electromagnets circumferentially arranged around a rotating shaft. Each of the electromagnets has a coil which is electrically connected so as to generate both a magnetic bias and a rotating three-phase field. First terminals of opposing coils are connected in common to a corresponding phase of a three-phase controller for generating the rotating field, whereas second terminals of the coils not connected to the same phase are connected at corresponding star points. The star points are connected to DC power for generating the magnetic bias.
Abstract:
The present invention relates to the use of stator windings of an induction machine to provide both rotation of the rotor and active rotor positioning within the stator frame by modification of the magnetizing current component in the D-Q plane of the rotor applied transformed to the AC waveform current of the stator windings according to an X-Y direction describing a rotor repositioning requirement.
Abstract:
A radial, active magnetic bearing apparatus comprising at least three electromagnets which are distributedly arranged is excited by a three-phase rotary current controller.
Abstract:
The invention relates to an apparatus for the contact-free journalling of a rotor by rotary field machine stators. The rotary field machine stators are magnetically coupled, on the one hand, via the rotor of ferromagnetic material and, on the other hand, via a flux conduction ring of a ferromagnetic material and/or a housing of a ferromagnetic material. The radial magnetic bearing forces in the rotary field machine stators are produced in that means are present in the arrangement which produce magnetic unipolar fluxes flowing through the rotary field machine stators. Two-pole control fluxes are superimposed on the unipolar fluxes in the rotary field machine stators, and the control fluxes are controlled by the currents in two-pole rotary field windings. The position of the rotor is measured by position sensors. A control apparatus calculates the required phase currents as a result of the position signals and feeds the rotary field windings in such a manner that the rotor is held in suspension.
Abstract:
A fixed gain electromagnetic actuator for controlling the position of a body including at least two pair of a magnetically permeable pole spaced from the body, bias coils about each pole, separate control coils about each pole, a bias source for the bias coils providing a current in the bias coils producing a steady-state equal strength magnetic field on opposing sides of a body, and a control source for the control coils providing a current in the control coils for producing an increase in the magnetic field on one side of the body and a corresponding equivalent decrease in the magnetic field on the opposing side of the body to compensate for any external upsetting forces acting on the body.
Abstract:
Systems, methods, and devices for generating electromagnetic forces may involve generating an axial control magnetic flux in an axial control magnetic circuit comprising a first axial pole, a second axial pole, and an axial actuator target, the axial actuator target coupled to a body having a rotational axis. A radial control flux can be generated in a radial control magnetic circuit comprising a first radial pole, a second radial pole, and a radial actuator target. An electrical compensation current can be applied to an electrical bias flux leveling coil to cancel or nearly cancel any changes of the magnetic flux leaking from either the first or the second axial poles into the radial poles, electrical bias flux leveling coil wound around the rotational axis and located axially between the radial poles and the closest of the first or the second axial poles.
Abstract:
A stator is provided which exerts a combined electromagnetic force of a plurality of electromagnets on a drive shaft having a fluctuating load. A controller is provided which controls a current difference between a first coil current passed through a coil of the electromagnet generating an electromagnetic force in a direction opposite to that of the load and a second coil current passed through a coil of the electromagnet generating an electromagnetic force in the same direction as that of the load to perform a position control on the drive shaft. The controller adjusts the second coil current to reduce an average value of the second coil current.