Abstract:
In some embodiments a propulsion system includes a thrust chamber having an inside wall, an expansion nozzle mounted to the thrust chamber and having an interior and having an exterior, a main propellant injector mounted to the thrust chamber to inject a fluid in the interior of the thrust chamber, the fluid comprising oxidizer, fuel and internal film coolant, the internal film coolant ranging from about 1% to about 5% of the fluid, limited coolant tubing circumscribing the exterior of the expansion nozzle to circulate an external coolant, and an injector mounted to the expansion nozzle to inject the external coolant in the interior of the expansion nozzle, the external convective coolant about 2.5% of the fluid. The system operates at lower temperatures while having conventional amounts of thrust, in which the thrust chamber can be made of thin walls of lower cost conventional metals with simple coolant tube construction.
Abstract:
A sealing arrangement for sealing a leakage gap between relatively moveable parts in a flow path between a region of high-fluid pressure and a region of low fluid pressure comprises a sealing member having an upstream surface, a downstream surface, a radially outer surface and a radially inner surface, said sealing member being in communication with a housing via resilient means. The resilient means is fixedly joined to the upstream surface of the sealing member such that during operation both the radial force induced on the sealing member by fluid flowing axially into and circumferentially over the radially inner surface and the axial force induced on the sealing member because of a pressure difference across the sealing member is resisted by the resilient means.
Abstract:
In some embodiments a propulsion system includes a thrust chamber having an inside wall, an expansion nozzle mounted to the thrust chamber and having an interior and having an exterior, a main propellant injector mounted to the thrust chamber to inject a fluid in the interior of the thrust chamber, the fluid comprising oxidizer, fuel and internal film coolant, the internal film coolant ranging from about 1% to about 5% of the fluid, limited coolant tubing circumscribing the exterior of the expansion nozzle to circulate an external coolant, and an injector mounted to the expansion nozzle to inject the external coolant in the interior of the expansion nozzle, the external convective coolant about 2.5% of the fluid. The system operates at lower temperatures while having conventional amounts of thrust, in which the thrust chamber can be made of thin walls of lower cost conventional metals with simple coolant tube construction.
Abstract:
A sealing arrangement for sealing a leakage gap between relatively moveable parts in a flow path between a region of high fluid pressure and a region of low fluid pressure comprises a sealing member having an upstream surface, a downstream surface, a radially outer surface and a radially inner surface, the sealing member being in communication with a housing via a resilient element. The resilient element is fixedly joined to the upstream surface of the sealing member such that during operation both the radial force induced on the sealing member by fluid flowing axially into and circumferentially over the radially inner surface and the axial force induced on the sealing member because of a pressure difference across the sealing member is resisted by the resilient element.
Abstract:
An assembly is provided for a gas turbine engine. This assembly includes a rotating structure, a stationary structure and a bushing. The rotating structure extends axially along and is rotatable about a centerline. The stationary structure extends circumferentially about the rotating structure. The stationary structure is configured from or otherwise includes stationary structure material with a coefficient of thermal expansion between 10 μin/in-° F. and 15 μin/in-° F. The bushing is radially between the rotating structure and the stationary structure. The bushing includes a mount and a bearing within the mount. The mount is configured from or otherwise includes mount material with a coefficient of thermal expansion between 9 μin/in-° F. and 10 μin/in-° F. The mount material contacts the stationary structure material. The bearing is configured from or otherwise includes bearing material, where the bearing material is engaged with and rotatably supports the rotating structure. The bearing material is or otherwise includes copper.
Abstract:
A method of increasing wear resistance of one or more part(s) of a rotating mechanism includes manufacturing the one or more part(s) with a portion thereof configured to be exposed to wear during fluid flow associated with the rotating mechanism having a dimension different from that of a desired dimension, applying a protective coating of an aluminum bronze alloy to the portion through welding deposition, and mechanically treating the protective coating. The method also includes applying one or more layer(s) of solid-alloy over the protective coating through electro-erosion deposition, and continuing the mechanical treatment of the protective coating and/or the one or more layer(s) of solid-alloy after the solid-alloy deposition to obtain the desired dimension of the portion.
Abstract:
A fan assembly has a central metallic element and a polymeric fan. The polymeric fan has a hub carrying the central metallic element and has a plurality of blades extending from the hub. The central metallic element has a central longitudinal aperture and a lateral surface. The central metallic element lateral surface is of substantially uniform substantially square section along a majority of a length of the central metallic element.
Abstract:
According to one aspect, a rotating structure comprises a hub having a mounting slot defined by a cavity surface and a body having an anchor structure disposed in the mounting slot. A wear member is disposed between the anchor structure and the cavity surface and the wear member has at least first and second portions of first and second material characteristics, respectively.
Abstract:
A method of increasing wear resistance of one or more part(s) of a rotating mechanism includes manufacturing the one or more part(s) with a portion thereof configured to be exposed to wear during fluid flow associated with the rotating mechanism having a dimension different from that of a desired dimension, applying a protective coating of an aluminum bronze alloy to the portion through welding deposition, and mechanically treating the protective coating. The method also includes applying one or more layer(s) of solid-alloy over the protective coating through electro-erosion deposition, and continuing the mechanical treatment of the protective coating and/or the one or more layer(s) of solid-alloy after the solid-alloy deposition to obtain the desired dimension of the portion.
Abstract:
A fan assembly has a central metallic element and a polymeric fan. The polymeric fan has a hub carrying the central metallic element and has a plurality of blades extending from the hub. The central metallic element has a central longitudinal aperture and a lateral surface. The central metallic element lateral surface is of substantially uniform substantially square section along a majority of a length of the central metallic element.