Abstract:
A manufacturing method of a TiAl joined body includes: an arranging step and a heating step. The arranging step is a step of arranging a plurality of members which contains a TiAl intermetallic compound and insert materials which contain Ti as a major element, Cu and Ni such that each of the insert materials is inserted between two adjacent members of the plurality of members. The heating step is a step of heating the plurality of members and the insert materials in a non-oxidizing atmosphere at a temperature above melting points of the insert materials and below melting points of the plurality of members.
Abstract:
In some embodiments a propulsion system includes a thrust chamber having an inside wall, an expansion nozzle mounted to the thrust chamber and having an interior and having an exterior, a main propellant injector mounted to the thrust chamber to inject a fluid in the interior of the thrust chamber, the fluid comprising oxidizer, fuel and internal film coolant, the internal film coolant ranging from about 1% to about 5% of the fluid, limited coolant tubing circumscribing the exterior of the expansion nozzle to circulate an external coolant, and an injector mounted to the expansion nozzle to inject the external coolant in the interior of the expansion nozzle, the external convective coolant about 2.5% of the fluid. The system operates at lower temperatures while having conventional amounts of thrust, in which the thrust chamber can be made of thin walls of lower cost conventional metals with simple coolant tube construction.
Abstract:
A sealing arrangement for sealing a leakage gap between relatively moveable parts in a flow path between a region of high-fluid pressure and a region of low fluid pressure comprises a sealing member having an upstream surface, a downstream surface, a radially outer surface and a radially inner surface, said sealing member being in communication with a housing via resilient means. The resilient means is fixedly joined to the upstream surface of the sealing member such that during operation both the radial force induced on the sealing member by fluid flowing axially into and circumferentially over the radially inner surface and the axial force induced on the sealing member because of a pressure difference across the sealing member is resisted by the resilient means.
Abstract:
Components are disclosed which include a first component section and a second component section joined to form a hollow structure defining a plenum having an interior surface, wherein the component sections each include mating ridges joined together along the length of the plenum, and a corrosion-resistant cladding layer including a corrosion-resistant material overlaying the interior surface of the plenum. In one embodiment, the component is a gas turbine combustor fuel manifold. A method of forming the components includes applying corrosion-resistant segments including a corrosion-resistant material to each of the surfaces of the component sections, and joining the component sections to form the component, wherein joining the component sections includes fusing the corrosion-resistant segments into the corrosion-resistant cladding layer, and joining the mating ridges of the component sections.
Abstract:
A method to increase the damping of a substrate using a face-centered cubic ferromagnetic damping coating having high damping loss attributes when a strain amplitude is 500-2000 micro-strain, and/or maximum damping loss attributes that occurs when the strain amplitude is greater than 250 micro-strain, and a turbine component having a face-centered cubic ferromagnetic damping coating.
Abstract:
In some implementations a propulsion system includes a thrust chamber comprised of a combustion chamber and an expansion nozzle. The thrust chamber has an interior and exterior surfaces and a main propellant injector mounted to the thrust chamber to inject an oxidizer and a fuel into the interior of the thrust chamber. The total fluid flowing to the rocket engine is compromised of oxidizer, fuel, internal film coolant, and external convective coolant. The internal film coolant ranges from about 1% to about 10% of the total fluid. Reduced coolant tubing circumscribes the exterior of the thrust chamber to circulate an external convective coolant, and a nozzle film coolant manifold mounted to the expansion nozzle injects the external convective coolant onto the interior wall of the expansion nozzle, the external convective coolant being about 1% to about 10% of the total fluid flow to the thrust chamber.
Abstract:
A method of manufacturing a turbine vane within an engine case includes additively manufacturing a combustor liner within an engine case, additively manufacturing a support structure attached to the combustor liner at a radially distal position, and additively manufacturing the turbine vane attached to the support structure at an inwardly adjacent position to the radially distal position.
Abstract:
Disclosed is a blade element of a turbomachine, in particular of a gas turbine, which comprises a fastening element (10) with which the blade element is arranged in a receptacle (11) of the turbomachine. in the region of the fastening element, the blade element has a core region (18) and an envelope region (19) which at least partially envelops the core region. The core region is formed from a blade base material which is more brittle than the envelope material of the envelope region, and the envelope region is formed by a coating. The envelope material is a blade base material which has been modified to achieve a higher ductility or is a pseudoelastic or superelastic material.
Abstract:
There is provided a bearing for motor-powered fuel injection pumps, made from Cu—Ni-based sintered alloy, which is able to be obtained at a low cost, having excellent corrosion and abrasion resistances. The bearing contains 10 to 20% by mass of Ni, 5 to 13% by mass of Sn, 0.1 to 0.8% by mass of P, 1 to 6% by mass of C, and a remainder containing Cu and inevitable impurities, and is formed with a Ni—Sn—Cu—P phase containing at least 30% by mass of Sn in a grain boundary, and has a 8 to 18% porosity. The Ni—Sn—Cu—P phase contains 30 to 49% by mass of Ni, 10 to 30% by mass of Cu, 0.5 to 1.5% by mass of P, and a remainder containing Sn and inevitable impurities.