Abstract:
A heating, cooling, and power device includes a shaft and an expander coupled to the shaft to rotate the shaft. A first conduit is coupled to the expander and configured to transport a working fluid. A heater is coupled through the first conduit to the expander. A heat pump is coupled to the shaft. An electric machine is coupled to the shaft to produce electricity or mechanical shaft power. A recuperator includes a second conduit coupled between the expander and recuperator. The heat pump includes a first heat exchanger including a second conduit coupled between the expander and the first heat exchanger. An expansion device includes a third conduit coupled between the first heat exchanger and the expansion device. A second heat exchanger includes a fourth conduit coupled between the expansion device and second heat exchanger. A compressor is coupled to the shaft.
Abstract:
A power plant including a turbine unit having a turbine, a generator connected to the turbine for power transmission, and a cooling device for cooling the generator is provided. The cooling device is provided to release waste heat from the generator to a device of the power plant. Waste heat may be used in the power plant process, thus attaining increased efficiency.
Abstract:
A process of energy production is disclosed. The process includes integrating three or more energy production technologies such that a first byproduct of a first energy production technology is applied to a second energy production technology and a second byproduct of the second energy production technology is applied to a third energy production technology. The process also includes operating the integrated energy production technologies to produce energy such that at least a portion of the first byproduct is utilized in an operation of the second energy production technology and a portion of the second byproduct is utilized in an operation of the third energy production technology.
Abstract:
A continuous power system assembly is provided that includes an integrated shaft-driven unit. The unit contains a turbine, an alternator, a flywheel and a feed pump, all of which are coupled to the shaft. During various modes of operation, any of the turbine, alternator or flywheel may provide the torque used to drive the shaft. When the alternator is not providing the necessary torque to drive the shaft, it is operated as a generator that provides back-up power to a load. The present invention also includes a unique nozzle design that improves the ease with the nozzles may be manufactured in comparison to known designs. The nozzle is manufactured as two halves which are mated as part of the manufacturing process. The individual nozzles may, because only half of the nozzle segments exist on either half of the nozzle block, be easily manufactured using conventional machining.
Abstract:
Systems and systems to generate clean energy and for providing hydrogen capture and carbon capture sequestration are provided. Hydrogen from partial combustion of hydrocarbon fuel in combination with full combustion of carbon from hydrocarbon fuel is used to generate clean power with hydrogen capture and carbon capture sequestration.
Abstract:
A heating, cooling, and power device includes a shaft and an expander coupled to the shaft to rotate the shaft. A first conduit is coupled to the expander and configured to transport a working fluid. A heater is coupled through the first conduit to the expander. A heat pump is coupled to the shaft. An electric machine is coupled to the shaft to produce electricity or mechanical shaft power. A recuperator includes a second conduit coupled between the expander and recuperator. The heat pump includes a first heat exchanger including a second conduit coupled between the expander and the first heat exchanger. An expansion device includes a third conduit coupled between the first heat exchanger and the expansion device. A second heat exchanger includes a fourth conduit coupled between the expansion device and second heat exchanger. A compressor is coupled to the shaft.
Abstract:
A propulsion engine comprising at least a first propulsion unit including a first fan encased by a geared ring and a gas turbine engine driving a first shaft connected to the first fan, at least a second propulsion unit including a second fan encased by a geared ring connected to a second shaft operatively coupled to an electric machine and at least an electric storage device connected to the electric machine. The geared rings are configured to transmit torque between the fans so that they can rotate in conjunction (directly or through an intermediate gear) when they are driven by at least one of said first and second shafts. The propulsion engine is arranged for controlling the torque to be supplied to the assembly of the first and second fans by the gas turbine engine and/or by the electric machine acting as a motor or as a generator.
Abstract:
A device for heating, generating electric power and cooling enclosed spaces, which is connected to at least one closed-circuit pipe which acts by thermal radiation and comprises at least one turbine or microturbine of the axial or tangential type or of the type that merges into the closed-circuit pipe, placed in partial vacuum by means of a first fan. An alternator for generating electric power and elements for feeding the power to the grid or to user devices, and an absorber for generating cool air or refrigerated water, are connected to the turbine or microturbine.
Abstract:
In a gas turbine power generator system, when there is an increase in the demand of a user system, a battery system supplies a supplemental electric power which is given by adding an added electric power to a difference between a current output of the power generator and the increased demand. Because the supplemental electric power is greater than the difference between the current output of the generator and the increased demand by the added electric power, the load acting upon the gas turbine engine is correspondingly reduced even from the preceding steady state so that the gas turbine engine can quickly accelerate to the level that matches the increased demand of the user system. Therefore, the battery system is required to supply electric power only for a relatively short time as compared to the case where the supplemental electric power is equal to the difference between the output of the power generator and the demand, and the capacity of the battery system may be smaller than the case where the battery meets the entire demand while the gas turbine engine is being accelerated.
Abstract:
A heating, cooling, and power device includes a shaft and an expander coupled to the shaft to rotate the shaft. A first conduit is coupled to the expander and configured to transport a working fluid. A heater is coupled through the first conduit to the expander. A heat pump is coupled to the shaft. An electric machine is coupled to the shaft to produce electricity or mechanical shaft power. A recuperator includes a second conduit coupled between the expander and recuperator. The heat pump includes a first heat exchanger including a second conduit coupled between the expander and the first heat exchanger. An expansion device includes a third conduit coupled between the first heat exchanger and the expansion device. A second heat exchanger includes a fourth conduit coupled between the expansion device and second heat exchanger. A compressor is coupled to the shaft.