Abstract:
Apparatuses, methods, and systems for fuel injection are disclosed. The apparatus includes an inner sac with at least one spray hole disposed on an inner surface of the apparatus, the at least one spray hole leading to a fuel passage extending therefrom, at least one counterbore extending partially between an outer surface of the apparatus and the sac along the fuel passage, and at least one air entrainment hole extending from the outer surface of the apparatus toward the at least one counterbore, the at least one air entrainment hole fluidly coupled with the at least one counterbore and configured to provide air to the fuel passage.
Abstract:
Apparatuses, methods, and systems for fuel injection are disclosed. The apparatus includes an inner sac with at least one spray hole disposed on an inner surface of the apparatus, the at least one spray hole leading to a fuel passage extending therefrom, at least one counterbore extending partially between an outer surface of the apparatus and the sac along the fuel passage, and at least one air entrainment hole extending from the outer surface of the apparatus toward the at least one counterbore, the at least one air entrainment hole fluidly coupled with the at least one counterbore and configured to provide air to the fuel passage.
Abstract:
A large two-stroke turbocharged compression-ignited internal combustion crosshead engine with a plurality of cylinders has at least one pressure booster for each cylinder for boosting fuel pressure, two or more electronically controlled fuel valves for each cylinder with an inlet of the two or more electronically controlled fuel valves being connected to an outlet of the at least one pressure booster. An electronic control unit is connected to the at least one pressure booster and the two or more electronically controlled fuel valves. The electronic control unit is configured to determine a start time for a fuel injection event, activate the at least one pressure booster ahead of the determined start time and pen the two or more electronically controlled fuel valves at the determined start time.
Abstract:
Vehicles and engines are provided. The engine, for example, may include a first engine component configured to be ohmically coupled to a common ground, a second engine component configured to be coupled to the first engine component, the second engine component comprising an insulative materially ohmically isolating the second engine component from the first engine component, the second engine component including an inclusion having a predetermined depth along a surface of the second engine component configured to be coupled to the first engine component, a third engine component configured to be coupled to the second engine component, and a spring clip configured to be ohmically coupled to the third engine component, wherein the spring clip is further configured to be disposed within the inclusion of the second engine component and to have a deflectable surface having an undeflected depth greater than the predetermined depth of the inclusion.
Abstract:
A six-stroke engine includes a cylinder, a piston, a cylinder head, a combustion chamber, cylinder injector, a spark plug, an intake port, an exhaust port, an intake valve, an exhaust valve, a valve gear, and a control device. The valve gear operates the intake valve and the exhaust valve to execute six strokes including an intake stroke, a compression stroke without ignition, an expansion stroke without combustion, a compression stroke with ignition, an expansion stroke with combustion, and an exhaust stroke in this order. The control device is programmed to cause the cylinder injector to inject fuel and to energize the spark plug in the compression stroke with ignition.
Abstract:
A method and a control unit are disclosed for controlling an internal combustion engine having fuel injector(s), a camshaft for actuating inlet and/or outlet valve(s), a valve-train adjusting device for controllably changing the actuating characteristic of at least one valve which is actuated by means of the camshaft, and optionally having a camshaft sensor which supplies a camshaft signal dependent on the camshaft angle, a crankshaft sensor which supplies a crankshaft signal representing the crankshaft angle, and a control unit for controlling the fuel injection and the valve-train adjusting device. In order to obtain information about the current setting of the valve-train adjusting device, at least one cylinder pressure signal supplied by a cylinder pressure sensor for measuring the pressure in an associated cylinder is evaluated with regard to interference signals, and the evaluation result is taken into consideration in the control of the valve-train adjusting device.
Abstract:
In addition to liquid in a thermal volume-neutral stroke transmitter, first and/or second displacement body(ies) is/are positioned in the stroke transmitter, for displacing the liquid. These three materials in the closed system are designed so that the stroke transmitter remains pressure-free during temperature changes.
Abstract:
A fuel injection system for two-cycle engines comprising high pressure fuel injectors adapted to be installed in a two-cycle gas engine assembly.
Abstract:
A bypass controller (30) controls ON/OFF of a three-way electromagnetic valve (62) according to a detection value of a cam chamber sensor (12a). When the cam chamber sensor (12a) detects a viscosity of lubricant exceeding a predetermined allowable value, the three-way electromagnetic valve (62) is controlled to turn ON so that the output side of an oil separator (13) communicates with a bypass route (61). The pressure in the cam chamber (12) is reduced to or below the atmospheric pressure by suction of a compressor (16) with a check valve (14) regulating the pressure in the cam chamber (12) to the atmospheric pressure or above in the bypassed state. When the detection value of the viscosity of the lubricant output by the cam chamber sensor (12a) has become the predetermined allowable value or below, the three-way electromagnetic valve (62) is controlled to turn OFF so that the output side of the oil separator (13) communicates with the check valve (14) and the bypass route (61) is cut off.
Abstract:
A fuel injector nozzle and method for dispersing fuel during a normal combustion operation and a supplemental combustion operation, the fuel injector nozzle comprising: a plurality of first outlet openings configured to disperse fuel in a first arrangement; and a plurality of second outlet openings configured to collide with the fuel passing through the plurality of first openings to disperse fuel in a second arrangement, wherein either the first or second arrangement is selected by the position of the piston.