Abstract:
An exemplary intake manifold may include an upper manifold configured to receive fresh air, an EGR tube configured to introduce exhaust gas into the upper manifold to be mixed with the fresh air, and a lower manifold configured to distribute the mixture of the fresh air and the exhaust gas cylinders of the internal combustion engine. The upper manifold may include an upper shell and a lower shell that may cooperate to define at least one channel in which at least a portion of the EGR tube may be secured.
Abstract:
An intake apparatus for an internal combustion engine includes an intake apparatus body including a plurality of intake pipes which are connected to respective cylinders of the internal combustion engine, the internal combustion engine including the cylinders of which the number is multiples of three, and an outside gas distribution portion distributing outside gas to each of the plurality of intake pipes, the outside gas distribution portion including a single first outside gas distribution pipe connected to an outside gas supply source, a plurality of second outside gas distribution pipes branched from the first outside gas distribution portion, an outside gas collective passage gathering outside gas from the plurality of second outside gas distribution pipes, and three third outside gas distribution pipes branched from the outside gas collective passage and connected to the plurality of intake pipes respectively.
Abstract:
When a deceleration request is issued while the engine load of an internal combustion engine 10 is in a predetermined high-load region, and the vehicle is decelerated so that the engine load transitions from the high-load region to a low-load region to respond to the deceleration request, control is performed that continues a fuel supply from injectors 36 of a first cylinder #1 and a fourth cylinder #4 and cuts a fuel supply from injectors 36 of a second cylinder #2 and a third cylinder #3. Condensed water generated in an intercooler 24 is caused to flow between two guide devices 22c provided at the bottom of a convergence portion 22a of an intake manifold 22 to thereby flow into intake branch pipes 22b of the second cylinder #2 and third cylinder #3.
Abstract:
In an intake device for an internal combustion engine, a difference in the air-fuel ratio between the cylinders is reduced without increasing the lengths of the branch passages. An intake device (23) for an internal combustion engine (1) having at least three cylinders (3) includes: an intake chamber (30) configured to be connected with an air inlet (16); and multiple branch passages (31) connected at upstream ends (41) thereof to the intake chamber and connected at downstream ends thereof to intake ports (6) communicating with the cylinders, respectively, wherein the upstream ends of the branch passages are arranged in a direction of rotation about a predetermined center line X in a same order as an order of ignition of the cylinders.
Abstract:
A bolt-on replacement intake manifold has an asymmetrical plenum with a first end including an inlet, a closed terminal end, a concave top surface and a convex bottom surface; a flange; and a plurality of runners extending from the bottom surface of the plenum and terminating at the flange. The plenum defines an interior space in flow communication with the runners. The bottom surface of the plenum is wider than the top surface. The plenum initially widens from the inlet to the first runner and then begins to narrow from the first runner toward the last runner adjacent to the closed terminal end. The runners are tapered, curved, and vary in length. The intake manifold causes air to exit each of the plurality of runners at substantially the same angle. The manifold balances airflow across each runner and increases swirl inside the cylinders enhancing fuel economy, power output, and torque.
Abstract:
An intake assembly for an internal combustion engine is disclosed. The engine may have a plurality of cylinders. The intake assembly may have an intake manifold. The intake manifold may be configured to supply a gaseous fluid to the plurality of cylinders. The intake assembly may also have a collecting chamber fluidly connected to the intake manifold. The collecting chamber may be adapted to be fluidly connected to an intake port of one of the plurality of cylinders. The collecting chamber may also be configured to limit a backflow of the gaseous fluid from the intake port into the intake manifold.
Abstract:
An air-balanced engine assembly is configured to operate efficiently while producing a reduced level of harmful emissions. The engine assembly includes a two-stroke internal combustion engine with multiple power cylinders and intake and exhaust manifolds that fluidly communicate with the cylinders. The engine assembly also includes an air balancing assembly with valves that control intake air flow from the intake manifold to the cylinders. The valves cooperate to balance intake air flow among the cylinders and are configured to substantially equalize trapped equivalence ratios among the cylinders.
Abstract:
An air inlet system for an internal combustion engine includes an inlet duct for furnishing air to the engine's cylinders, and a combination port formed within the inlet duct for inducting both recirculated exhaust gas and charge air into the engine. Mixing of the recirculated exhaust gas and the charge air is promoted by a flow director which is mounted at a downstream end of an EGR supply passage, as well as by a flow guide mounted upstream from the flow director, with the flow guide including an aerodynamic projection for causing charge air to move smoothly around the flow director and a swirl generator.
Abstract:
An intake manifold including a collecting pipe and a plurality of branch pipes comprises a single gas intake port, a gas outlet port opening into each branch pipe, and a gas passage extending to be divided into more than one branch passages from the gas intake port to each gas outlet port. The gas passage is configured so that the branch passages are equal in pressure loss which will be generated between the gas inlet port and each gas outlet port, and the gas passage extends to be branched in stages from the gas inlet port to each gas outlet port, forming a tournament-form configuration which is symmetrical about the gas inlet port. The collecting pipe and each branch pipe are integrally molded of resin. The gas inlet port and the gas passage are provided in a projecting section integrally molded with the branch pipes.
Abstract:
Chaotic air flow structures in internal combustion engine manifolds may lead to poor combustion performance and hence undesirable emissions such as visible smoke. Manifolds with flow characteristics compromised by other design requirements are especially prone to these poor characteristics. To overcome these, an engine air induction arrangement includes a feed passage having an end portion in a manifold with cylinder ports. The end portion is formed in such a manner that air exiting the end portion via an opening is hindered from travelling away from the cylinder ports. This improves the flow structure and evens air distribution to the cylinder ports, hence improving the combustion process and reducing emission levels.