Abstract:
The present disclosure includes a method of testing for gas and temperature distribution in a goaf, wherein the test device comprises a cable coupled to a cable dragging machine, the cable including a test end configured to be buried in the goaf; a gas temperature tester configured to test a gas for composition and temperature; and a gas pump configured to continuously pump gas from the test end and transmit it to the gas temperature tester. In some examples, the method comprises placing the test end of the cable in the goaf. According to some examples, the method comprises starting the cable dragging machine and starting the gas pump simultaneously with starting the cable dragging machine. The method may comprise withdrawing the cable, via the cable dragging machine, at a constant speed and analyzing, via the gas temperature tester, the composition and temperature of the gas.
Abstract:
Disclosed is a method for measuring gas pressure of a close-distance seam group simultaneously, including the following steps: constructing a pressure-measuring drill hole inclined downwards; lowering a first seam piezometer tube, lowering a baffle and a polyurethane blocking material after a tube head reaching a lowermost seam; and installing a gas pressure gauge; lowering a second seam piezometer tube, lowering the baffle and the polyurethane blocking material after the tube head reaching a second layer of seam; and installing the gas pressure gauge; lowering a nth seam piezometer tube, lowering the baffle and the polyurethane blocking material after the tube head reaching a nth layer of seam; and installing the gas pressure gauge; injecting a high-water and quick-solidifying material into the drill hole; and connecting the gas pressure gauges through optical fibers, and connecting the gas pressure gauges with a ground control system.
Abstract:
A tunnel automatic monitoring and measuring equipment and method based on fixed-point tour measurement are provided. The equipment includes a monitoring trolley that can move freely in the longitudinal direction of the tunnel, multiple automatic tracking and identification devices are set on the monitoring trolley, the automatic tracking and identification device is connected to the background processing system telecommunication; a monitoring points with reflective markings are arranged on the surface of the tunnel support structure, under the cooperation of the monitoring trolley and the automatic tracking and identification device, the reflective markings set on the tunnel support structure can be automatically measured at the fixed point to obtain the coordinate information of the relevant monitoring points; then, the deformation data of the support structure required in the construction process are extracted by coordinate information calculation.
Abstract:
A method of operating a cable handling system of a longwall mining machine having a shearer movable along a pan line to mine material along a mine face, the cable handling system including:
i) a service line configured to carry one or more supply lines to the shearer for facilitating shearer operation, ii) a plurality of interconnected trays to accommodate the service line, iii) a plurality of sensor nodes distributed along a length of the service line, and iv) a plurality of transceivers distributed along a length of the pan line, the method comprising:
a) sensing orientation, acceleration and/or position data of the service line using the plurality of sensor nodes, b) using the plurality of transceivers to receive the orientation, acceleration and/or position data from the plurality of sensor nodes and to transmit the orientation, acceleration and/or position data to a controller, and c) detecting, by the controller, an actual or imminent failure mode of the service line using analysis of the orientation, acceleration and/or position data from the plurality of the sensor nodes.
Abstract:
Disclosed is a system and a method of transient electromagnetic advanced detection. The system includes a detection host, an electromagnetic signal transmitter, a probe, and a communication device. The system and method of transient electromagnetic advance detection disclosed by examples of the present disclosure can realize an early-warning through a transient electromagnetic advance detection in a borehole while drilling the borehole in a tunnel or a roadway.
Abstract:
An impact panel for protecting mining equipment may include a plurality of ceramic tiles affixed to a base plate. The impact panel may further include at least one fixing hole disposed within the plurality of ceramic tiles and the base plate with a metal frame disposed around an outer peripheral edge of the plurality of ceramic tiles that is also affixed to the base plate. The impact panel may have at least one plug disposed inside the at least one fixing hole to seamlessly cover the at least one fixing hole. The panels may also be wired with sensors that will communicate with process control circuits allowing data collection on remote process and remote mining equipment.
Abstract:
A method of monitoring a longwall shearing mining machine in a longwall mining system, wherein the shearing mining machine includes a shearer having a first cutter drum and a second cutter drum, includes receiving, by a processor, shearer position data over a shear cycle. The horizon profile data includes information regarding at least one of the group comprising of a position and angle of the shearer, a position of the first cutter drum, and a position of the second cutter drum. The method also includes analyzing the shearer position data, by the processor, to determine whether a position failure occurred during the shear cycle based on whether the computed horizon profile data was within normal operational parameters during the shear cycle, and generating an alert upon determining that the position failure occurred during the shear cycle.
Abstract:
The invention discloses a real-time water-level monitoring system for a dumping site of an open-pit coal mine. The dumping site of the open-pit coal mine comprises an aboveground part and an underground part, where the aboveground part is a stacking site (1) located above an original ground surface. The real-time water-level monitoring system for a dumping site of an open-pit coal mine comprises a first measuring well (2) and a second measuring well (3), where the first measuring well (2) is arranged vertically in the center of the stacking site (1), and the second measuring well (3) includes a vertical section (301), a horizontal section (302), and a free section (303) connected in sequence; and a first water-impermeable layer (4), a second water-impermeable layer (5), and a third water-impermeable layer (6) are provided internally in the stacking site (1).
Abstract:
Systems and methods for operating a mining machine. One system includes a controller, a stationary object, and a radar device. The radar device transmits radio waves toward the stationary object and detects reflections of the radio waves. The controller obtains timing information regarding the radio waves and the reflections. Based on the timing information, the controller is configured to determine a first distance between the radar device and the stationary object before sumping the mining machine into material and a second distance between the radar device and the stationary object after sumping the mining machine into the material. The controller is also configured to determine a sump depth of the mining machine based on the first distance and the second distance, compare the determined sump depth to a predetermined sump depth, and perform at least one automatic action when the determined sump depth does not satisfy the predetermined sump depth.
Abstract:
Personnel and vehicle collision avoidance devices configured to be used in collision avoidance systems are disclosed. The collision avoidance devices are configured to be aware of the context (e.g. position, location, state, status, etc.) in which the person or vehicle is. This awareness allows the devices to avoid transmitting non-hazardous proximity warnings when the context does not warrant the transmission of proximity warnings, and to transmit special critical proximity warnings when the context warrants the transmission of such proximity warnings. To detect the context, the devices comprise one or more context-awareness mechanisms (e.g. user input interfaces, sensors, infra-red receivers, etc.), each of which being capable of detecting one or more particular contexts. A collision avoidance system comprising these personnel and vehicle collision avoidance devices is also presented.