Abstract:
A rubber-reinforcing steel cord embedded in a rubber product has a stranded structure including a core strand, and a plurality of sheath strands intertwined around an outer circumferential surface of the core strand; wherein a lubricant is provided between wires that constitute the core strand.
Abstract:
Provided is a rubber-reinforcing steel cord that has superior productivity and is advantageous in reducing weight and improving bending resistance, as well as a conveyor belt that uses the rubber-reinforcing steel cord. A rubber-reinforcing steel cord 1 having a 1+6+(6+6) structure formed by twisting individual steel wires 2, 3, 4a, and 4b once in the same direction, a twist multiple of at least 9 and not greater than 14, and an outer diameter of not greater than 4 mm is used by being embedded in a rubber product.
Abstract:
Rubber-cord complex 9 having improved wet heat adhesive property between rubber and cord. The rubber-cord complex includes cord 10 comprising drawn plated wire 17 prepared by providing brass plated layer 16E on surface of element wire 15 and drawing the resulting plated wire and rubber 12 vulcanized and bonded to cord 10. The rubber-cord complex 9 has adhesion reaction layer 25 (formed by cross-linking sulfur and copper) between rubber 12 and brass plated layer 16E. Adhesion reaction layer 25 has average thickness of 50-1,000 nm. Interface S between adhesion reaction layer 25 and the rubber has a fractal dimension of 1.001-1.300 in a wet heat deterioration state after being subjected to vulcanization to bond rubber 12 thereto and being held at a temperature of 50-100° C. and a humidity of 60-100% for one hour to 20 days.
Abstract:
A rubber-cord complex having an improved wet heat adhesive property between a rubber and a cord comprising a drawn plated wire, and including a metal cord comprising a drawn plated wire prepared by providing a brass plated layer on the surface of an element wire and drawing the resulting plated wire, and a rubber vulcanized and bonded to the cord, wherein in a wet heat deterioration state of the drawn plated wire after being subjected to the vulcanization to bond the rubber thereto and further held under an atmosphere having a temperature of 50 to 100° C. and a humidity of 60 to 100% for one hour to 20 days, the average grain size of crystal grains present in the brass plated layer is not more than 50 nm, and the grain boundary of the crystal grains has a fractal dimension of 1.001 to 1.500.
Abstract:
An improved wind power device for wind energy conversion or vehicle propulsion. Among many possibilities contemplated, the device may have a moving sail with tethered wings (101), moving in elliptical trajectory, utilize separate sheave (503) and cable drum (505), use a block and tackle (411), attached to the tether and utilize a cable having a flexible jacket with aerodynamically streamlined cross section (603).
Abstract:
A metal cord includes at least one preformed elementary metal wire. The metal cord has an elongation at break, measured on the bare cord, higher than or equal to 3%, preferably 4% to 6%; an elongation at break, measured on the rubberized and vulcanized cord, which differs in an amount not higher than or equal to 15%, preferably 2% to 10% with respect to the elongation at break measured on the bare cord; a part load elongation, measured on the bare cord, higher than or equal to 0.4%, preferably 0.5% to 1.5%; a part load elongation, measured on the rubberized and vulcanized cord, which differs in an amount not higher than or equal to 15%, preferably 0.5% to 10%, with respect to the part load elongation measured on the bare cord.
Abstract:
A reinforcing cord of the present invention is a reinforcing cord (10) for rubber reinforcement including a fiber core (11) and a plurality of strands (12) disposed around the fiber core (11). The fiber core (11) is formed of one or a plurality of highly elastic fibers having a tensile elastic modulus of at least 100 GPa. Each of the plurality of strands (12) is formed of a plurality of glass fibers that are primarily twisted, and the plurality of strands (12) are finally twisted to be disposed around the fiber core (11). The direction of the final twist of the plurality of strands is opposite to the direction of the primary twist in each of the plurality of strands (12). The number of final twists of the plurality of strands (12) is 1.0 to 3.0 times/25 mm, and a ratio of the number of primary twists in each of the plurality of strands (12) to the number of final twists of the plurality of strands (12) (the number of primary twists/the number of final twists) is in a range of 1.5 to 2.5.
Abstract:
A steel cord for reinforcing a rubber article and a pneumatic tire. When it is a reinforcement material for a tire belt, the steel cord is capable of satisfying weight lightening, durability and driving stability. The steel cord comprises a core made by parallelly arranging two non-twisted core wires (1) from one layer of sheath made by twisting three to five sheath wires (2) around the core. The outline shape of the cord in a cross-section orthogonal to the axis of the cord is flat The inclination, as seen from the side of the cord, of the core wires is 3° or less relative to the cord axis.
Abstract:
A coated metal reinforcement element for polymeric or elastomeric materials comprises a coating of: a polymer or prepolymer compatible with and co-polymerizable, co-vulcanizable or crosslinkable with said polymeric or elastomeric material to be reinforced, and bearing functional groups; either covalently bonding to the metal surface of said reinforcement element; or forming covalent bonds with the outward directed first functional groups of a mono-or multimolecular layer of a bifunctional adhesion promotor intercalated between said metal by its second functional groups. A method for the coating includes a one step and a two step procedure.
Abstract:
A transmission for folding out the solar cell panels (3 through 7) folded in an accordion-like manner on a spacecraft (1) has cable pulleys (22 through 27) at the hinges (9 through 14), around pairs of which pulleys endless cables (29 through 33) are wound. To adapt its change in length during temperature changes to the change in the length of the panels (3 through 7) and to increase its rigidity to elongation, the cable (29 through 33) is provided with a plastic sheathing (47, 48) firmly connected to same outside the area of the cable pulleys (22 through 27).