Abstract:
Provided are: a fiber-containing material which has improved strength in an out-of-plane direction without a decrease in strength in an in-plane direction; a method for inserting out-of-plane reinforcement threads; and a method for producing the fiber-containing material. The fiber-containing material contains a base material and out-of-plane reinforcement threads. The base material contains reinforcement fibers extending in a direction along a plane. The out-of-plane reinforcement threads are formed in the base material so as to extend in a direction intersecting the direction along the plane.
Abstract:
The present invention relates to a parchmentized fibrous support containing parchmentizable synthetic fibers parchmentized with sulfuric acid, the process for making such a support and the use thereof.
Abstract:
A material for use as a wound dressing, the material being in the form of a roll and comprising gel forming fibers and the material having lines of longitudinal stitching.
Abstract:
A method and device are disclosed for producing 3D fabrics including yarns/tows that remain in pre-tensioned condition. Further, the method and device produce 3D fabrics with features that increase the mechanical performance of produced materials which are highly suited for composite materials and impact injury mitigation applications. The method and device also provide a simple, quick and compact arrangement to produce economically both uniaxial and multiaxial types of 3D fabrics with specific dimensions and shapes in ‘middle-outwards’ manner to reduce production time by half by arranging the set of axial yarns in zigzag fashion between oppositely facing supports. The method and device aid automated production of 3D fabrics and their direct packaging to eliminate contamination of produced 3D fabrics. A 3D fabric produced in this way is also disclosed. The 3D fabric includes yarns/tows that remain in pre-tensioned condition.
Abstract:
A method of manufacturing a textured element may include (a) collecting a plurality of filaments upon a textured surface to form a non-woven textile and (b) separating the non-woven textile from the textured surface. Another method of manufacturing a textured element may include depositing a plurality of thermoplastic polymer filaments upon a first surface of a polymer layer to (a) form a non-woven textile and (b) bond the filaments to the polymer layer. A textured surface may then be separated from a second surface of the polymer layer, the second surface being opposite the first surface, and the second surface having a texture from the textured surface.
Abstract:
Fibrous material webs and methods of making the fibrous material webs. Binderless webs can be formed in a continuous process where fiber material, such as glass is melted and formed into fibers. The fibers are formed into a web of binderless glass fibers or a web with a dry binder. The binderless web or the web with dry binder can be layered and/or the fibers that make up the web can be mechanically entangled, for example, by needling.
Abstract:
Fibrous material webs and methods of making the fibrous material webs. Binderless webs can be formed in a continuous process where fiber material, such as glass is melted and formed into fibers. The fibers are formed into a web of binderless glass fibers or a web with a dry binder. The binderless web or the web with dry binder can be layered and/or the fibers that make up the web can be mechanically entangled, for example, by needling.
Abstract:
A nonwoven material has a plurality of randomly oriented and bulked crimped filaments, a plurality of point bonds interconnecting said crimped filaments into a fixed, 3-dimensional structure, and either a surface portion of said fixed, 3-dimensional structure having a greater density than an inner portion of said 3-dimensional structure or an external surface of said fixed, 3-dimensional structure being substantially free of any protruding filaments. The nonwoven material is made by: bulking a filament tow, fixing the bulked tow into a 3-dimensional structure, and calendering the 3-dimensional structure.
Abstract:
Fibrous material webs and methods of making the fibrous material webs. Binderless webs can be formed in a continuous process where fiber material, such as glass is melted and formed into fibers. The fibers are formed into a web of binderless glass fibers or a web with a dry binder. The binderless web or the web with dry binder can be layered and/or the fibers that make up the web can be mechanically entangled, for example, by needling.
Abstract:
A plurality of unidirectional sheets (30a, 30b, 30c) are superposed in different directions and they are bonded together. At least one of the unidirectional sheets is made by spreading a tow so as to obtain uniform thickness, width not less than 5 cm, and a weight of no more than 300 g/m2, cohesion being imparted to the sheet so as to enable it to be handled prior to being superposed with other sheets. Advantageously, the unidirectional sheets are made of carbon fibers and are obtained by spreading out large tows.
Abstract translation:多个单向片(30a,30b,30c)在不同的方向上重叠并且结合在一起。 单向片材中的至少一个是通过铺展丝束制成的,以获得均匀的厚度,宽度不小于5cm,重量不超过300g / m 2,赋予片材内聚力,使其能够 在与其他片材重叠之前被处理。 有利地,单向片由碳纤维制成,并且通过展开大的丝束获得。