Abstract:
A water treatment system is disclosed having electrolytic cell for liberating hydrogen from a base solution. The base solution may be a solution of brine for generating sodium hypochlorite, or potable water to be oxidized. The cell has first and second opposing electrode end plates held apart from each other by a pair of supports such that the supports enclose opposing sides of the end plates to form a cell chamber. One or more inner electrode plates are spaced apart from each other in the cell chamber in between the first and second electrode plates. The supports are configured to electrically isolate the first and second electrode plates and the inner electrode plates from each other. The first and second electrode plates are configured to receive opposite polarity charges that passively charge the inner electrode plates via conduction from the base solution to form a chemical reaction in the base solution as the base solution passes through the cell chamber.
Abstract:
A method for operating a solid oxide fuel cell having cathode-anode-electrolyte units, each including a first electrode for an oxidizing agent, a second electrode for combustible gas, and a solid electrolyte there between forming a metal interconnection between the CAE-units. The interconnect including a combustible gas distribution structure, and a second metallic gas distribution element having two channels for the oxidizing agent and separate channels for a tempering fluid. Cooling the second gas distribution element and a base layer of the first gas distribution element with the tempering fluid (O2). Measuring the first and second control temperatures T1 and T2. T1 being the tempering fluid temperature entering the fluid inlet side of the fuel cell. T2 being the tempering fluid temperature leaving the second gas distribution element. Where the amount of tempering fluid supplied to the second gas distribution element is controlled based on the difference between T1 and T2.
Abstract:
A solid oxide fuel cell or a solid oxide electrolyzing cell includes a) a plurality of cathode-anode-electrolyte units, each CAE-unit having a first electrode for an oxidizing agent, a second electrode for a combustible gas, and a solid electrolyte between the first electrode and the second electrode and b) a metal interconnect between the CAE-units. The interconnect having a first gas distribution element and a gas distribution structure for the combustible gas, wherein the first gas distribution element is in contact with the second electrode of the CAE-unit, and a second gas distribution element having channels for the oxidizing agent and including separate channels for a tempering fluid. The channels for the oxidizing agent are in contact with the first electrode of an adjacent CAE-unit, and the first gas distribution element and the second gas distribution element being electrically connected.
Abstract:
An electrolytic cell, a method for manufacturing the cell, and a method of operating same. The electrolytic cell has at least two bipolar plates, at least one fluid inflow and outflow, as well as at least one laminated core arranged between the at least two bipolar plates. The laminated core is constructed from laminations which are stacked one on top of the other. At least two laminations have recesses which are designed to extend through the entire thickness of the respective lamination. The at least two laminations are arranged one on top of the other in such a way that recesses in adjacent laminations overlap partially, but not completely, as a result of which ducts, which are continuous in the direction of the plane of the lamination, are formed.
Abstract:
An electrolyser (100) comprising an electrolysis cell stack (101) inside a pressure vessel (115), wherein the first terminal end plate (107a) of the cell stack is integral with one a closed ends of the pressure vessel, thus forming a stationary head (107) of the cell stack equipped with the fluid and electric connections, and the second terminal end plate (108a) of the cell stack is inside the vessel and is free to move in a longitudinal direction in response to thermal expansion or contraction, thus forming a floating head (108) of the stack. The pressure vessel (115) is preferably pressurized using a gaseous product obtained in the process of electrolysis.
Abstract:
A water treatment system is disclosed having electrolytic cell for liberating hydrogen from a base solution. The base solution may be a solution of brine for generating sodium hypochlorite, or potable water to be oxidized. The cell has first and second opposing electrode endplates held apart from each other by a pair of supports such that the supports enclose opposing sides of the endplates to form a cell chamber. One or more inner electrode plates are spaced apart from each other in the cell chamber in between the first and second electrode plates. The supports are configured to electrically isolate the first and second electrode plates and the inner electrode plates from each other. The first and second electrode plates are configured to receive opposite polarity charges that passively charge the inner electrode plates via conduction from the base solution to form a chemical reaction in the base solution as the base solution passes through the cell chamber.
Abstract:
A compact hybrid cell hydrogen generator that produces hydrogen-oxygen gas for use with vehicles, internal combustion engines and other applications that solves design shortcomings of present state of the art systems while presenting an efficient and reliable, compact, cost efficient system of producing hydrogen-oxygen gas without requirements or investments into expensive infrastructure, or ill fitting and cumbersome equipment.
Abstract:
An ion exchange membrane electrolyzer comprises electrodes at least either of which is held in contact with leaf springs formed integrally with a leaf spring holding member arranged in an electrode chamber so as to extend toward the electrode and remain electrically energized at the respective electrode touching sections thereof, each of the leaf springs having a crooked section arranged at a position separated from its connecting section connecting itself to the leaf spring holding member and adapted to be bent toward the leaf spring holding member when the electrode touching section is pressed toward the leaf spring holding member side.
Abstract:
The invention deals with an electrochemical system for compressing gases and/or for producing gases by electrolysis, consisting of an electrochemical compressor stack (1) having layering of several electrochemical cells, which are separated from one another in each case by bipolar plates (3; 3′), wherein the bipolar plates have openings for media supply and media discharge (5a, 5b) for the electrochemical cells and the electrochemical cell stack can be placed under mechanical compressive strain in direction (6) of the layering. The bead arrangements (7; 7′) are resilient and are provided at least in some regions to seal the openings (4, 5a, 5b) and/or an electrochemically active region (10) of the electrochemical cells.
Abstract:
A process for preparing or regenerating peroxodisulfuric acid and its salts by electrolysis of an aqueous solution containing sulfuric acid and/or metal sulfates at diamond-coated electrodes without addition of promoters is described, with bipolar silicon electrodes which are coated with diamond on one side and whose uncoated silicon rear side serves as cathode being used.