Abstract:
The invention essentially consists in supplying fuel (either swam or a mixture of steam with CO2 or H2 or CH4) to distinct zones of a cell or a group of stacked cells and of an adjacent cell or group of adjacent stacked cells within a given (co-)electrolysis reactor or a SOFC fuel-cell stack.
Abstract:
The present disclosure is directed to a method for tuning the performance of at least one electrochemical cell of an electrochemical cell stack. The method includes supplying power to an electrochemical cell stack. The electrochemical cell stack includes a plurality of electrochemical cells. The method further includes monitoring a parameter of at least one electrochemical cell and determining if an electrochemical cell becomes impaired. The method also includes diverting a fraction of the current flow from the impaired electrochemical cell during operation of the electrochemical cell stack.
Abstract:
The invention relates to a carbon-free electrocatalyst for fuel cells, containing an electrically conductive substrate and a catalytically active species, wherein the conductive substrate is an inorganic, multi-component substrate material of the composition 0X1-0X2, in which 0X1 means an electrically non-conductive inorganic oxide having a specific surface area (BET) in the range of 50 to 400 mVg and 0X2 means a conductive oxide. The non-conductive inorganic oxide 0X1 is coated with the conductive oxide 0X2. The multi-component substrate preferably has a core/shell structure. The multi-component substrate material 0X1-0X2 has an electrical conductivity in the range>0.01 S/cm and is coated with catalytically active particles containing noble metal. The electrocatalysts produced therewith are used in electrochemical devices such as PEM fuel cells and exhibit high corrosion stability.
Abstract:
A hydrogen gas generator system comprises a reactor stack adapted to perform electrolysis on water in an electrolyte solution, the reactor stack comprising a plurality of spaced apart electrode plates and electrolyte solution disposed between the plates, each plate having an upper outlet aperture and a lower inlet aperture to allow movement of electrolyte solution across the plates. A separator is configured to receive a mixture of gas and electrolyte solution from a top of the reactor stack and separate the gas from the electrolyte solution. A gas outlet configured to remove gas from the separator, and an electrolyte solution inlet configured to return electrolyte solution from the separator to a bottom of the reactor stack. The system comprises a pump configured to pump electrolyte solution in a circuit from the electrolyte solution outlet of the separator/reservoir, through the reactor stack at velocity, and back to the separator/reservoir, and in which in the upper and lower apertures are sufficiently large to allow pumped flow through the reactor stack.
Abstract:
The present application provides a device for generating hydrogen gas having a plurality of discharge electrode pairs, at least a first oxidation element and a second oxidation element, and at least one electrolysis electrode pair. The at least one electrolysis electrode pair is configured to perform electrolysis by flowing an electric current through the water and using heat generated by the oxidation of the first and second oxidation elements.
Abstract:
A flow plate for use as an anode current collector in an electrolytic cell for the production of hydrogen from water is provided. The flow plate comprises a channel plate and a cover plate. A front face of the channel plate is provided with a flow field pattern of open-faced channels defined by depressed portions alternating with elevated portions. The cover plate made of a material that is corrosion resistant in an anodic environment of water electrolysis. The cover plate is arranged parallel on top of the channel plate and in electrical contact with the front face thereof. The cover plate is further provided with a pattern of through-going apertures alternating with closed portions, and the closed portions cover at least the elevated portions of the channel plate.
Abstract:
Laminates (A) that each have a catalyst layer and an electrolyte membrane are obtained either by disposing catalyst layers on one surface of each of a plurality of the electrolyte membranes, or by coating the catalyst layers with an electrolyte membrane forming composition. A membrane electrode assembly is then obtained either by layering the laminates (A) together with the electrode membrane sides facing each other, or by layering a laminate (A) and an electrolyte membrane (a) together such that one side of the electrolyte membrane (a) is in contact with the electrolyte membrane of the laminate (A) and then disposing a catalyst layer on the other side of the electrolyte membrane (a).
Abstract:
A structural plate with external reinforcing means is provided for an electrolyzer module. The structural plate defines at least one degassing chamber and a half cell chamber opening. The external reinforcing means contact the structural plate for mitigating outward displacement of the structural plate in response to fluid pressure within the structural plate. The structural plate and the external reinforcing means define interlocking features for achieving contact and corresponding mechanical reinforcement.
Abstract:
The gas distribution element for a fuel cell or an electrolyzing device including a first layer and a second layer, the first and second layers are disposed with a gas distribution structure forming a pattern for a fluid flow of a first reactant fluid. The second layer is a homogenizing element, which has first apertures, wherein at least some of the first apertures have a length and a width, with the length being greater than the width and the length extending in a transverse direction to the main direction of fluid flow.
Abstract:
A solid oxide fuel cell or a solid oxide electrolyzing cell includes a) a plurality of cathode-anode-electrolyte units, each CAE-unit having a first electrode for an oxidizing agent, a second electrode for a combustible gas, and a solid electrolyte between the first electrode and the second electrode and b) a metal interconnect between the CAE-units. The interconnect having a first gas distribution element and a gas distribution structure for the combustible gas, wherein the first gas distribution element is in contact with the second electrode of the CAE-unit, and a second gas distribution element having channels for the oxidizing agent and including separate channels for a tempering fluid. The channels for the oxidizing agent are in contact with the first electrode of an adjacent CAE-unit, and the first gas distribution element and the second gas distribution element being electrically connected.