Abstract:
A method for manufacturing a composite material, a sensor element or an active component of a sensor element. The sensor element is applied in a field device of automation technology. At least two materials with different physical and chemical properties are predetermined depending on a functionality of the sensor element or the active component of the sensor element. An outer shape, into which the at least two materials should be formed, is predetermined. The outer shape is divided into a plurality of virtual spatial regions, wherein in each virtual spatial region the material distribution of the at least two materials occurs homogeneously and periodically according to predetermined rules corresponding to a microstructure. The predetermined rules are ascertained via a computer supported method depending on the predetermined functionality of the sensor element or the active component of the sensor element, wherein digital data, which describe the ascertained distribution of the at least two materials, are transferred to at least one 3D printer. As a printed product the sensor element or the active component of the sensor element is created by the 3D printer based on the digital data.
Abstract:
The invention provides a metallic foam material with better mechanical properties than known foamed materials, and a method of making such a material. Although known foamed metals are light in weight, and sandwich structures formed of such materials can be formed into structural components, the tendency for the structure to crush and fracture under compressive loading, with consequent crack propagation, limits their use in applications in which the integrity of the component is important. The invention addresses this problem by providing a fibre-reinforced foam that combines the tensile strength of a high strength fibre such as carbon fibres with the impact resistance (through crushing and deformation) of metallic foam. The metal foam imparts a greater strength to the carbon-fibre-reinforced plastics (CFRP) part of the structure than it would have by itself. Under tensile loads, the fibre reinforcement gives the metallic foam enhanced strength and low creep.
Abstract:
Certain embodiments here include compositions of matter and methods of manufacturing a ply composition, comprising a piece of fabric, wherein the fabric includes a plurality of plated tows, and eutectic alloy, wherein the plated tows are intertwined with the eutectic alloy.
Abstract:
A spline structure, in the form of an aeronautical brake drive bar, has wheel attachment points at its ends for engaging a wheel rim. Each wheel carries a regularly spaced series of these drive bars for engaging friction discs carried by the wheel hub. The main body of each brake drive bar is formed from titanium internally reinforced by composite blocks each comprising a bundle of silicon carbide fibres contained in a matrix that is diffusion bonded within the main body. Other spline structures can be formed in a similar manner.
Abstract:
In one embodiment, composite constructions of the invention are in the form of a plurality of coated fibers bundled together to produce a fibrous composite construction in the form of a rod. Each fiber has a core formed from a hard phase material, that is surrounded by a shell formed from a binder phase material. In another embodiment of the invention, monolithic sheets of the hard phase material and the binder phase material are stacked and arranged to produce a swirled composite in the form of a rod. In still another embodiment of the invention, sheets formed from coated fibers are arranged to produce a swirled composite. Inserts for use in such drilling applications as roller cone rock bits and percussion hammer bits, and shear cutters for use in such drilling applications as drag bits, that are manufactured using conventional methods from these composite constructions exhibit increased fracture toughness due to the continuous binder phase around the hard phase of the composites. These binder phases increase the overall fracture toughness of the composite by blunting or deflecting the tip of a propagating crack.
Abstract:
A method for the fabrication of large metal matrix composite structures comprising the continuous joining by brazing or welding of aluminum matrix tape using an infrared laser to melt the surface of the tape while applying pressure to the tape and simultaneously contacting it with previously applied tape layers on a rotating mandrel. The apparatus utilized to accomplish this fabrication process may include a variety of pre and post-contact heaters and preferably includes instruments for the continuous monitoring and control of the process.
Abstract:
An apparatus for the fabrication of metal matrix composite structures comprising the continuous joining by brazing, soldering or welding of aluminum matrix tape using a laser to melt the surface of the tape while applying pressure to the tape and simultaneously contacting it with previously applied tape layers on a surface. The apparatus utilized to accomplish this fabrication process may include a variety of pre and post-contact heaters and preferably includes instruments for the continuous monitoring and control of the process.
Abstract:
Rib and spar webs are joined in a composite wingbox to eliminate fasteners by welding the webs along bondlines defined by overlapping sections of the webs. Heat to produce the weld is generally achieved resistively by connecting a multistrip susceptor positioned along the bond line to a current source, since the geometry makes it difficult to heat these web joints inductively. The wingbox is completed without fasteners by welding skins to the rib-spar wingbox.
Abstract:
In one embodiment, composite constructions of the invention are in the form of a plurality of coated fibers bundled together to produce a fibrous composite construction in the form of a rod. Each fiber has a core formed from a hard phase material, that is surrounded by a shell formed from a binder phase material. In another embodiment of the invention, monolithic sheets of the hard phase material and the binder phase material are stacked and arranged to produce a swirled composite in the form of a rod. In still another embodiment of the invention, sheets formed from coated fibers are arranged to produce a swirled composite. Inserts for use in such drilling applications as roller cone rock bits and percussion hammer bits, and shear cutters for use in such drilling applications as drag bits, that are manufactured using conventional methods from these composite constructions exhibit increased fracture toughness due to the continuous binder phase around the hard phase of the composites. These binder phases increase the overall fracture toughness of the composite by blunting or deflecting the tip of a propagating crack.
Abstract:
Methods of fabricating a metal-matrix composite materials comprise the steps of providing a plurality of fibers, providing a plurality of metal wires, positioning the wires and fibers in alternating fashion on a substrate, covering the wires and fibers with a layer of metal to create a multi-layer composite, and ultrasonically consolidating the composite. Titanium, aluminum and alloys and other metals are applicable to the process. The fibers may be boron, silicon carbide, glass, alumina and other common reinforcements or, alternatively, optical fibers, shape-memory fibers, piezo-ceramic fibers may be used. The fibers or the wires may be of uniform or varying composition, and may b are applied to a working surface separately or simultaneously, in which case they may be collimated and delivered to a working surface in aligned fashion.