Abstract:
The invention relates to the use of a compound of formula KMgF3 to trap metals present in the form of fluorides and/or of oxyfluorides in a gaseous or liquid phase.It also relates to a compound of formula KMgF3 which has a surface specific area at least equal to 30 m2/g and at most equal to 150 m2/g and also to its methods of preparation.The invention notably finds application in the nuclear industry, in which it can advantageously be used to purify uranium hexafluoride (UF6) present in a gaseous or liquid stream, with regard to metal impurities which are also present in this stream.
Abstract:
A waste treatment apparatus treats radioactive contaminated waste from a nuclear fuel material handling facility to decontaminate the radioactive contaminated waste by using an electrolytic molten salt, and reuses the electrolytic molten salt so that any effluents are not produced. Radioactive contaminated waste (10) from a nuclear fuel material handling facility is subjected to electrolysis by a molten salt electrolysis unit (20) to decontaminate the waste (10). The used salt (16) used for decontaminating the waste (10) is filtered to separate nuclear fuel materials (19) from the used salt (16). The filtered salt (18) is reused by the molten salt electrolysis unit (20). The salt adhering to the decontaminated waste (12) is recovered by an evaporating unit (59), and the recovered salt (15) is reused by the molten salt electrolysis unit (20).
Abstract:
A method of recovering contaminating or valuable components from a solid feed material (10), includes feeding the material (10) into an optional grinder as a pretreatment (12), then into a heated melter (14) along with a material (16) that provides fluorine, to provide a molten or semi-molten material, where the molten material is then reacted with water or an acid solution (22) in vessel (20), to form a dissolved molten or semi-molten salt in solution, which can be passed to extractor (26) or the like and provide a concentrated stream of the valuable or contaminating components (30).
Abstract:
The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission- and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200.degree. C. to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400.degree. C.; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164.degree. C. to 2.degree. C.; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic.
Abstract:
A pyrochemical process is utilized to recover 99% of the remaining transuranium materials from plutonium-uranium extraction waste. One step of the overall pyrochemical process involves the electrochemical separation of the waste components. A solid anode and a solid cathode are used in this electrochemical separation step to electrorefine in single or multiple steps. The solid anode and solid cathode are selected from certain preferred anodic and cathodic materials. Where multiple electrorefining steps are used to obtain more complete electroseparation, this is achieved by employing in the multiple electrorefining steps both a solid anode, suitably graphite, and a molten metal anode containing a mixture of the actinide and rare earth elements. This results in greater separation than can be realized through electroseparation by use of either anode alone.
Abstract:
An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.
Abstract:
Uranium chloride is reacted with either magnesium, sodium or calcium in the presence of a molten salt comprising light metal chlorides including lithium chloride. The temperature is maintained below the melting point of uranium. The magnesium may be in the form of magnesium-cadmium alloy, the temperature being maintained below the temperature at which magnesium and cadmium vaporize. The components of the molten salt may be first fused together so as to form the molten salt eutectic. Subsequently after separation of the uranium, products of the reaction may be recovered and recycled.
Abstract:
In the pyrochemical reduction of uranium dioxide or other actinide metal oxides by reaction with magnesium, magnesium oxide byproduct is produced. The use of a salt flux comprising magnesium chloride and a rare earth element trichloride such as neodymium chloride is disclosed. The neodymium chloride reacts with magnesium oxide to form magnesium chloride and neodymium oxychloride. The resulting magnesium chloride-neodymium oxychloride salt mixture can readily be subjected to electrolysis to regenerate magnesium and neodymium chloride for reuse in the pyrochemical reduction process. Other uses of the magnesium chloride-neodymium chloride salt flux are also proposed.
Abstract:
A method of obtaining uranium metal from an oxidized uranium compound, characterized in that the oxidized compound is treated with chlorine and carbon at a first stage, to obtain a chloride which is reduced by electrolysis or metallothermy using a reducing metal at a second stage.
Abstract:
A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800.degree. C. to about 850.degree. C. to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The U-Fe alloy having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with Mg metal which takes up the actinide and rare earth fission product metals. The U-Fe alloy retains the noble metal fission products and is stored while the Mg is distilled and recycled leaving the transuranium actinide and rare earth fission products isolated.