摘要:
The present invention generally relates to methods of modifying the glycosylation structures of recombinant proteins expressed in fungi or other lower eukaryotes, to more closely resemble the glycosylation of proteins from higher mammals, in particular humans. The present invention also relates to novel enzymes and, nucleic acids encoding them and, hosts engineered to express the enzymes, methods for producing modified glycoproteins in hosts and modified glycoproteins so produced.
摘要:
The present invention provides nucleotide sequences of Macrophomina phaseolina (“M. phaseolina”) that encodes proteins/enzymes with cellulolytic activity, including a cellulase activity, a endoglucanase, a cellobiohydrolase, a β-glucosidase, a a-glucosidase, a xylanase, a mannanse, a β-xylosidase, a a-xylosidase, a galactosidase, an arabinofuranosidase, a a-fucosidases, a β-galactanase, an unsaturated β-glucuronyl hydrolase and/or oligomerase activity. Vectors, expression constructs and host cells comprising and/or consisting of the nucleotide sequences of the enzyme genes are also provided. The invention further provides methods for producing the enzymes and methods for modifying the enzymes in order to improve their desirable characteristics. The enzymes of the invention can be used in a variety of, but not limited to, pharmaceutical, agricultural, food and feed processing, biofuel, energy efficiency and industrial contexts. These enzymes are also useful for complete hydrolysis of lignocellulosic biomass into simple sugar that can then be fermented to liquid fuels and chemical feedstocks.
摘要:
The present invention generally relates to methods of modifying the glycosylation structures of recombinant proteins expressed in fungi or other lower eukaryotes, to more closely resemble the glycosylation of proteins from higher mammals, in particular humans. The present invention also relates to novel enzymes and, nucleic acids encoding them and, hosts engineered to express the enzymes, methods for producing modified glycoproteins in hosts and modified glycoproteins so produced.
摘要:
Disclosed herein are novel Pichia pastoris strains for expression of exogenous proteins with substantially homogeneous N-glycans. The strains are genetically engineered to include a mutant OCH1 allele which is transcribed into an mRNA coding for a mutant OCH1 gene product (i.e., α-1,6-mannosyltransferase, or “OCH1 protein”). The mutant OCH1 protein contains a catalytic domain substantially identical to that of the wild type OCH1 protein, but lacks an N-terminal sequence necessary to target the OCH1 protein to the Golgi apparatus. The strains disclosed herein are robust, stable, and transformable, and the mutant OCH1 allele and the ability to produce substantially homogeneous N-glycans are maintained for generations after rounds of freezing and thawing and after subsequent transformations.
摘要:
Disclosed herein are novel Pichia pastoris strains for expression of exogenous proteins with substantially homogeneous N-glycans. The strains are genetically engineered to include a mutant OCH1 allele which is transcribed into an mRNA coding for a mutant OCH1 gene product (i.e., α-1,6-mannosyltransferase, or “OCH1 protein”). The mutant OCH1 protein contains a catalytic domain substantially identical to that of the wild type OCH1 protein, but lacks an N-terminal sequence necessary to target the OCH1 protein to the Golgi apparatus. The strains disclosed herein are robust, stable, and transformable, and the mutant OCH1 allele and the ability to produce substantially homogeneous N-glycans are maintained for generations after rounds of freezing and thawing and after subsequent transformations.
摘要:
Disclosed herein are novel Pichia pastoris strains for expression of exogenous proteins with substantially homogeneous N-glycans. The strains are genetically engineered to include a mutant OCH1 allele which is transcribed into an mRNA coding for a mutant OCH1 gene product (i.e., α-1,6-mannosyltransferase, or “OCH1 protein”). The mutant OCH1 protein contains a catalytic domain substantially identical to that of the wild type OCH1 protein, but lacks an N-terminal sequence necessary to target the OCH1 protein to the Golgi apparatus. The strains disclosed herein are robust, stable, and transformable, and the mutant OCH1 allele and the ability to produce substantially homogeneous N-glycans are maintained for generations after rounds of freezing and thawing and after subsequent transformations.
摘要:
The present invention generally relates to methods of modifying the glycosylation structures of recombinant proteins expressed in fungi or other lower eukaryotes, to more closely resemble the glycosylation of proteins from higher mammals, in particular humans. The present invention also relates to novel enzymes and, nucleic acids encoding them and, hosts engineered to express the enzymes, methods for producing modified glycoproteins in hosts and modified glycoproteins so produced.
摘要:
Disclosed herein are novel Pichia pastoris strains for expression of exogenous proteins with substantially homogeneous N-glycans. The strains are genetically engineered to include a mutant OCH1 allele which is transcribed into an mRNA coding for a mutant OCH1 gene product (i.e., α-1,6-mannosyltransferase, or “OCH1 protein”). The mutant OCH1 protein contains a catalytic domain substantially identical to that of the wild type OCH1 protein, but lacks an N-terminal sequence necessary to target the OCH1 protein to the Golgi apparatus. The strains disclosed herein are robust, stable, and transformable, and the mutant OCH1 allele and the ability to produce substantially homogeneous N-glycans are maintained for generations after rounds of freezing and thawing and after subsequent transformations.
摘要:
Disclosed herein are novel Pichia pastoris strains for expression of exogenous proteins with substantially homogeneous N-glycans. The strains are genetically engineered to include a mutant OCH1 allele which is transcribed into an mRNA coding for a mutant OCH1 gene product (i.e., α-1,6-mannosyltransferase, or “OCH1 protein”). The mutant OCH1protein contains a catalytic domain substantially identical to that of the wild type OCH1 protein, but lacks an N-terminal sequence necessary to target the OCH1 protein to the Golgi apparatus. The strains disclosed herein are robust, stable, and transformable, and the mutant OCH1 allele and the ability to produce substantially homogeneous N-glycans are maintained for generations after rounds of freezing and thawing and after subsequent transformations.
摘要:
The present invention provides nucleotide sequences of Macrophomina phaseolina (“M. phaseolina”) that encodes proteins/enzymes with cellulolytic activity, including a cellulase activity, a endoglucanase, a cellobiohydrolase, a β-glucosidase, a a-glucosidase, a xylanase, a mannanse, a β-xylosidase, a a-xylosidase, a galactosidase, an arabinofuranosidase, a a-fucosidases, a β-galactanase, an unsaturated β-glucuronyl hydrolase and/or oligomerase activity. Vectors, expression constructs and host cells comprising and/or consisting of the nucleotide sequences of the enzyme genes are also provided. The invention further provides methods for producing the enzymes and methods for modifying the enzymes in order to improve their desirable characteristics. The enzymes of the invention can be used in a variety of, but not limited to, pharmaceutical, agricultural, food and feed processing, biofuel, energy efficiency and industrial contexts. These enzymes are also useful for complete hydrolysis of lignocellulosic biomass into simple sugar that can then be fermented to liquid fuels and chemical feedstocks.