Abstract:
A method to prevent, inhibit the progression of, reduce the severity of, or treat cardiac, vascular or skeletal dysfunction or defect(s) in a human having lysosomal storage disorder, is provided.
Abstract:
A co-therapeutic regimen comprising AAV9-mediated intrathecal/intracisternal and/or systemic delivery of an expression cassette containing a hIDUA gene and two or more immunosuppressants is provided herein. Also provided are methods useful for treating hIDUA deficiency (MPSI) and the symptoms associated with Hurler, Hurler-Scheie and Scheie syndromes.
Abstract:
The present disclosure is directed to methods of treating a steatosis-associated disorder and methods of treating a cytoplasmic glycogen storage disorder, including glycogen storage disease I, glycogen storage disease III, glycogen storage disease IV, and/or conditions associated with a PRKAG2 mutation, by administering a therapeutic agent selected from a lysosomal enzyme, an autophagy-inducing agent, or a combination thereof. Steatosis-associated disorders discussed herein include GSD Ia, GSD Ib, GSD Ic, NAFLD, and NASH. Other embodiments are directed to methods of reversing steatosis, modulating autophagy, inducing autophagy, and reversing glycogen storage. Methods of treating a cytoplasmic glycogen storage disorder by administering a lysosomal enzyme and a second therapeutic agent are also described. Other embodiments are directed to methods of treating a cytoplasmic glycogen storage disorder by administering a therapeutic agent as an adjunctive therapy to lysosomal enzyme replacement therapy.
Abstract:
Described herein are methods and compositions for treating MPS I (Hurler/Hurler-Scheie/Scheie Syndrome) by administering to the subject a composition comprising a iduronidase (IDUA) polynucleotide. In one aspect, provided is a method of reducing, delaying and/or eliminating one or more of the need for additional treatment procedures, the onset, progression and/or severity of symptoms in a subject with MPS I, by administering to the subject a composition comprising a iduronidase (IDUA) polynucleotide.
Abstract:
The present disclosure is directed to methods of treating a steatosis-associated disorder by administering a therapeutic agent selected from a lysosomal enzyme, an autophagy-inducing agent, or a combination thereof. Steatosis-associated disorders discussed herein include GSD Ia, GSD Ib, GSD Ic, NAFLD, and NASH. Other embodiments are directed to methods of reversing steatosis, modulating autophagy, inducing autophagy, and reversing glycogen storage.
Abstract:
The present invention relates to antisense oligonucleotides that modulate the expression of and/or function of Alpha-L-Iduronidase (IDUA), in particular, by targeting natural antisense polynucleotides of Alpha-L-Iduronidase (IDUA). The invention also relates to the identification of these antisense oligonucleotides and their use in treating diseases and disorders associated with the expression of IDUA.
Abstract:
A method to prevent, inhibit or treat one or more symptoms associated with a disease of the central nervous system by intrathecally, intracerebroventricularly or endovascularly administering a rAAV encoding a gene product associated with the disease, e.g., a mammal in which the gene product is absent or present at a reduced level relative to a mammal without the disease.
Abstract:
The invention provides methods for the synthesis of oligosaccharides comprising an aminooxy group. The invention further provides oligosaccharides comprising an aminooxy group, methods for coupling oligosaccharides comprising an aminooxy group to glycoproteins, and oligosaccharide-protein conjugates. Also provided are methods of treating a lysosomal storage disorder in a mammal by administration of an oligosaccharide-protein conjugate.
Abstract:
Nucleases and methods of using these nucleases for inserting a sequence encoding a therapeutic protein such as an enzyme into a cell, thereby providing proteins or cell therapeutics for treatment and/or prevention of a lysosomal storage disease.
Abstract:
The present invention relates to antisense oligonucleotides that modulate the expression of and/or function of Alpha-L-Iduronidase (IDUA), in particular, by targeting natural antisense polynucleotides of Alpha-L-Iduronidase (IDUA). The invention also relates to the identification of these antisense oligonucleotides and their use in treating diseases and disorders associated with the expression of IDUA.