Abstract:
Vectors and methods for the production of influenza viruses suitable as recombinant influenza vaccines in cell culture are provided. Bi-directional expression vectors for use in a multi-plasmid influenza virus expression system are provided. Additionally, the invention provides methods of producing influenza viruses with enhanced ability to replicate in embryonated chicken eggs and/or cells (e.g., Vero and/or MDCK) and further provides influenza viruses with enhanced replication characteristics. A method of producing a cold adapted (ca) influenza virus that replicates efficiently at, e.g., 25° C. (and immunogenic compositions comprising the same) is also provided.
Abstract:
The present invention relates, in general, to attenuated negative-strand RNA viruses having an impaired ability to antagonize the cellular interferon (IFN) response, and the use of such attenuated viruses in vaccine and pharmaceutical formulations. The invention also relates to the development and use of IFN-deficient systems for selection of such attenuated viruses.In particular, the invention relates to attenuated influenza viruses having modifications to the NS1 gene that diminish or eliminate the ability of the NS1 gene product to antagonize the cellular IFN response. The mutant viruses replicate in vivo but demonstrate reduced pathogenicity, and therefore are well suited for live virus vaccines, and pharmaceutical formulations.
Abstract:
Polypeptides, polynucleotides, methods, compositions, and vaccines comprising influenza hemagglutinin and neuraminidase variants are provided.
Abstract:
The present invention relates, to novel methods and substrates for the propagation of viruses. The invention relates to IFN-deficient substrates and methods for propagating viruses in these unconventional substrates. In particular, the invention relates to methods of propagating viruses in immature embryonated eggs, preferably six- to nine-day-old chicken eggs. The methods of the invention are particularly attractive for growing viruses suitable for use in vaccine and pharmaceutical formulations.
Abstract:
The present invention relates, in general, to attenuated negative-strand RNA viruses having an impaired ability to antagonize the cellular interferon (IFN) response, and the use of such attenuated viruses in vaccine and pharmaceutical formulations. The invention also relates to the development and use of IFN-deficient systems for selection of such attenuated viruses. In particular, the invention relates to attenuated influenza viruses having modifications to the NS1 gene that diminish or eliminate the ability of the NS1 gene product to antagonize the cellular IFN response. The mutant viruses replicate in vivo but demonstrate reduced pathogenicity, and therefore are well suited for live virus vaccines, and pharmaceutical formulations.
Abstract:
The present invention relates, to novel methods and substrates for the propagation of viruses. The invention relates to IFN-deficient substrates and methods for propagating viruses in these unconventional substrates. In particular, the invention relates to methods of propagating viruses in immature embryonated eggs, preferably six- to nine-day-old chicken eggs. The methods of the invention are particularly attractive for growing viruses suitable for use in vaccine and pharmaceutical formulations.
Abstract:
The present invention relates, to novel methods and substrates for the propagation of viruses. The invention relates to IFN-deficient substrates and methods for propagating viruses in these unconventional substrates. In particular, the invention relates to methods of propagating viruses in immature embryonated eggs, preferably six- to nine-day-old chicken eggs. The methods of the invention are particularly attractive for growing viruses suitable for use in vaccine and pharmaceutical formulations.
Abstract:
The present invention relates to a novel replication deficient influenza virus comprising a modified NS1 segment coding for a NS1 protein lacking a functional RNA binding domain and functional effector domain and having a heterologous sequence inserted between the splice donor site and the splice acceptor site of the NS gene segment. The virus can be used as vector for expression of various proteins like chemokines, cytokines or antigenic structures and to produce vaccines. A fusion peptide comprising part of the N-terminus of an NS1 protein and a signal sequence fused to the C-terminus of said NS1 peptide is also provided.
Abstract:
The invention provides a composition useful to prepare influenza viruses, e.g., in the absence of helper virus, using vectors which include tandem transcription cassettes containing PolI and/or PolII promoters.
Abstract:
Polypeptides, polynucleotides, methods, compositions, and vaccines comprising influenza hemagglutinin and neuraminidase variants are provided.