Abstract:
The invention relates to highly functionalized polyurethanes which are synthesized from molecules containing the functional groups A(B).sub.n, where A is an NCO group or a group reactive with an NCO group, B is an NCO group or a group reactive with an NCO group, A is reactive with B and n is a positive number and is at least equal to 2.
Abstract:
Water-dispersible sulfopoly(ester-urethane) compositions which comprise, in their backbone, at least one arylene or alkylene sulfonic acid group or a salt thereof, the polymer being terminated by at least one hydrolyzable silyl group. The compositions of the invention preferably have a sulfonate equivalent weight of about 500 to about 12,000 g/equivalent and a number average molecular weight less than 50,000. Compositions of the invention have utility as durable treatments such as low surface energy coatings that exhibit release towards adhesive materials, grease, and oils.
Abstract:
One-component, moisture-curable sealant compositions having fast cure times comprise a mixture of a silane-capped polyurethane polymer, an aminosilane cross-linking agent, and a silyl-substituted guanidine accelerator.
Abstract:
Hydrophilic polyurethane polymers having carboxy groups in the polymer backbone are prepared by reacting a polyol component, an ester of a carboxylic acid and a polyisocyanate to form a polyurethane intermediate. The intermediate is then saponified and the saponified product neutralized to form free carboxy groups. The water absorption of the intermediates and saponified polymers is above 10% and the polyurethanes may range from rigid solids to gel-like, high water absorptive polymers. Neutralization of the carboxy group with ammonium hydroxide produces a water soluble polyurethane which becomes water insoluble when the ammonia is driven off. The carboxy groups introduced into the polymeric chain provide reactive sites for attachment of various side-groups and also allow for various curing procedures. The polymers exhibit excellent adhesion to various substrates, and are suitable for use as light sensitive photographic layers on films, paper or glass; as boat and pipe coatings for decreasing hydrodynamic drag; as drug delivery systems; as burn and wound dressings; in cosmetic applications; in body implants; as coatings on cannulae; and a host of other applications.
Abstract:
Polymers of anionically polymerized monomers such as mono-olefins, conjugated dienes, vinyl substituted aromatics, vinyl substituted pyridine, vinyl substituted quinolines, various aldehydes, various epoxides, various oxetanes, various oxygen-containing compounds, and the like are produced and end capped with a polyisocyanate or polyisothiocyanate having the formula R--N.dbd.C.dbd.X).sub.n wherein R is a hydrocarbon, n is 2 or 3, and X is oxygen or sulfur. Such end capped polymers, of course, contain one reacted or connected isocyanate or isothiocyanate group and at least one free isocyanate or isothiocyanate end group, which free end group(s) reacts with an amide to give an imide end group. The imide terminated polymer is then hydrolyzed to form a stable amine terminated polymer. The reaction of the amide compound with the isocyanate(s) or isothiocyanate(s), followed by hydrolysis, results in the replacement of the free isocyanate or isothiocyanate end group(s) with an amine group(s). Thus, the amine terminated polymer contains the polymer connected to an isocyanate or isothiocyanate group (now an amide group or a thioamide group), which in turn is attached to the hydrocarbon portion, that is, the "R" portion of the polyisocyanate, which in turn is connected to the formed amine group. The amine terminated polymers may be stored extended periods of time and then reacted with various polymers, prepolymers, monomers, or various combinations thereof to form various block or graft copolymers. That is, the amine terminated polymer may be subsequently reacted with any amine reactive compound such as diepoxy monomers or an epoxy prepolymer in the presence of known epoxy catalysts to give a blocked epoxy copolymer. Similarly, the amine terminated polymer may be reacted with urea prepolymers or urea-forming monomers to yield a block urea copolymer. Reaction of the amine terminated polymer with urethane polymers, urethane prepolymers, or urethane-forming monomers will yield urethane block copolymer. Reaction of the amine terminated polymer with urethane-urea prepolymers or urethane-urea forming monomers will yield a urethane-urea block copolymer. Similarly, various dianhydride and diamine monomers may be utilized to form an imide block copolymer.
Abstract:
A moisture-curable resin composition containing a hydrolyzable silyl group-containing polyether compound as a curable component, said polyether compound comprising polyoxyalkylene chains derived from a polyoxyalkylene polyol having a hydroxyl value (x mgKOH/g) of from 5 to 35, a total degree of unsaturation (y meq/g) of not higher than 0.07 meq/g and y.ltoreq.0.9/(x-10), from 2 to 8 hydroxyl groups, and a content of oxyalkylene groups having at least 3 carbon atoms, of at least 60% by weight, and a hydrolyzable silyl group-containing terminal group present at least 1.3 terminals on the average of said polyoxyalkylene chains, said terminal group having a urethane bond linked to the polyoxyalkylene chain.
Abstract:
According to the present invention, heterocyclic copolymers comprising recurring units [A] and [B] having specific structures are obtained by hydrolyzing reaction products of diisocyanate compounds having specific structures with tolidine diisocyanate and hydrogen cyanide.The heterocyclic copolymers thus obtained are excellent in mechanical strength, heat resistance and solvent resistance.
Abstract:
One-component, moisture-curable sealant compositions having fast cure times comprise a mixture of a silane-capped polyurethane polymer, an aminosilane cross-linking agent, and a silyl-substituted piperazinyl accelerator.