摘要:
The present invention relates to a magnesium compound-supported nonmetallocene catalyst, which is produced by directly contacting a catalytically active metallic compound with a nonmetallocene ligand-containing magnesium compound, or by directly contacting a nonmetallocene ligand with a catalytically active metal-containing magnesium compound, through an in-situ supporting process. The process is simple and flexible. In the process, there are many variables in response for adjusting the polymerization activity of the catalyst, and the margin for adjusting the catalyst load or the catalyst polymerization activity is broad. The magnesium compound-supported nonmetallocene catalyst according to this invention can be used for olefin homopolymerization/copolymerization, in combination with a comparatively less amount of the co-catalyst, to achieve a comparatively high polymerization activity. Further, the polymer product obtained therewith boasts high bulk density and adjustable molecular weight distribution.
摘要:
Catalysts and catalyst systems useful for the olefin polymerization and copolymerization, and their synthesis procedure and usage are disclosed. These catalyst are a kind of novel complexes formed by transition metal from Group III to Group XI and multidentate ligand having the following formula:
摘要:
This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
摘要:
This invention relates to a supported nonmetallocene catalyst for olefin polymerization, which is produced by directly reacting a nonmetallocene ligand with a catalytically active metallic compound on a carrier through an in-situ supporting process. The process according to this invention is simple and feasible, and it is easy to adjust the load of the nonmetallocene ligand on the porous carrier. The supported nonmetallocene catalyst according to this invention can be used for olefin homopolymerization/copolymerization, even in combination with a comparatively less amount of the co-catalyst, to achieve a comparatively high polymerization activity. Further, the polymer product obtained therewith boasts desirable polymer morphology and a high bulk density.
摘要:
Catalysts and catalyst systems useful for the olefin polymerization and copolymerization, and their synthesis procedure and usage are disclosed. These catalyst are a kind of novel complexes formed by transition metal from group 3 to group 11 and multidentate ligand, wherein the catalysts have the following formula:
摘要:
This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
摘要:
The present invention relates to a magnesium compound-supported nonmetallocene catalyst, which is produced by directly contacting a catalytically active metallic compound with a nonmetallocene ligand-containing magnesium compound, or by directly contacting a nonmetallocene ligand with a catalytically active metal-containing magnesium compound, through an in-situ supporting process. The process is simple and flexible. In the process, there are many variables in response for adjusting the polymerization activity of the catalyst, and the margin for adjusting the catalyst load or the catalyst polymerization activity is broad. The magnesium compound-supported nonmetallocene catalyst according to this invention can be used for olefin homopolymerization/copolymerization, in combination with a comparatively less amount of the co-catalyst, to achieve a comparatively high polymerization activity. Further, the polymer product obtained therewith boasts high bulk density and adjustable molecular weight distribution.
摘要:
The instant invention provides a composition suitable for stretch hood, method of producing the same, and articles made therefrom. The article according to the present invention comprises a multi-layer film according to the present invention has a thickness of at least 3 mils comprising at least one inner layer and two exterior layers, wherein the inner layer comprises at least 50 weight percent polyethylene copolymer having a melt index less than 2 grams/10 minutes, a density less than or equal to 0.910 g/cm3, a total heat of fusion less than 120 Joules/gram and a heat of fusion above 115° C. of less than 5 Joules/gram, the total heat of fusion of the inner layer less than the heat of fusion of either of the two exterior layers, and wherein the multi-layer film has an elastic recovery of at least 40% when stretched to 100% elongation.
摘要:
This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
摘要:
This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.