Abstract:
There is provided a method of treating solid material, wherein the solid material includes target metallic material and one or more other metallic elements, wherein the target metallic material consists of at least one of tantalum and niobium, the method comprising contacting the solid material with a gaseous reagent material within a reaction zone, wherein the gaseous reagent material includes carbon tetrachloride.
Abstract:
A solid electrolyte material comprises a crystal structure including a structure framework and an ion-conductive species. The structure framework has a one-dimensional chain. In the one-dimensional chain, a plurality of polyhedrons are linearly connected to each other while sharing a corner, and each of the plurality of polyhedrons contains at least one type of cation and at least one type of anion.
Abstract:
There is provided a process of treating a metalliferrous material including at least one metal material fraction. Each one of the at least one metal material fraction includes a respective metal, wherein the respective metal is a transition metal. Each one of the at least one metal material fraction also includes a respective first operative material fraction and a respective second operative material fraction. The respective first operative material fraction consists of an elemental form of the respective metal, and the respective second operative material fraction consists of at least one oxide of the respective metal. The method includes providing reagent material including at least one diatomic halogen and at least one aluminium halide. The reagent material is contacted with the metalliferrous material in a reaction zone so as to effect a reactive process which effects production of an intermediate reaction product including at least one produced metal halide. Each one of the at least one produced metal halide includes a respective metal corresponding to the respective metal of a respective one of the at least one metal material fraction. A separation fraction is separated from the intermediate reaction product. The separation fraction includes at least one recovered metal halide.
Abstract:
Tantalum is recovered from an impure source containing niobium, tungsten, titanium, iron, and other impurities by a process comprising mixing the impure source with an alkali metal carbonate, drying the resulting mixture, heating the dried mixture to convert the tungsten to a soluble form, leaching to solubilize the tungsten, digesting the resulting leached solids containing tantalum in hydrochloric acid to solubilize iron values and a portion of the titanium values, dissolving the leached solids containing tantalum values in hydrofluoric acid, adjusting the pH of the resulting solution to form a first tantalum precipitate, dissolving the first tantalum precipitate in oxalic acid adjusting the pH to form a second tantalum precipitate, dissolving and digesting the second tantalum precipitate in hydrochloric acid solution to form a third tantalum precipitate of high purity.
Abstract:
Disclosed herein is a method for producing potassium fluorotantalate crystals, comprising heating, to 60null C. or higher, a starting solution prepared by adding hydrofluoric acid and hydrochloric acid, and, if necessary, water to a highly pure tantalum solution, adding potassium chloride to this starting solution, and cooling the mixture to 40null C. or lower at a cooling rate of less than 15null C./h to precipitate potassium fluorotantalate crystals, wherein the concentration of the hydrofluoric acid in the starting solution is not more than 20% by weight. By this method, highly pure, large-sized potassium fluorotantalate crystals can successfully be obtained in high yield. Moreover, disadvantages to equipment and operation in the prior art can be overcome to a significant extent with this method.
Abstract:
A method is described for the preparation of high surface area metal fluorides and metal oxyfluorides comprising reacting high surface area metal oxides with a fluorocarbon vapor wherein the fluorocarbon is selected from the group consisting of CH.sub.4-Q F.sub.Q wherein Q is 1 to 3 and totally or partially fluorinated C.sub.2 -C.sub.6 alkanes, alkenes and alkynes and C.sub.5 -C.sub.6 cyclic alkanes, preferably fluoroform (CHF.sub.3) wherein the metal oxides and the fluorocarbon vapors are contacted at a temperature of from about 300.degree. to about 800.degree. C., for a time sufficient to effect the essentially complete conversion of the metal oxides into metal fluorides or the partial conversion of the metal oxides into metal oxyfluorides. The metal oxides converted into metal fluorides may be selected from the group consisting of the oxides of sodium, potassium, lithium, cesium, magnesium, calcium, barium, strontium, tin, antimony, bismuth, titanium, zirconium, vanadium, chromium, manganese, iron, cobalt, rhodium, mercury, nickel, copper, silver, zinc, cadmium, lead, uranium, europium, indium, lutetium, neodymium, thallium and mixtures thereof. The metal oxides converted into metal oxyfluorides may be selected from the group recited above and further include silicon, niobium, hafnium, tantalum, molybdenum, tungsten, technetium, rhenium, osmium, iridium, lanthanum and ruthenium. The above metal oxides may also be utilized in combination with alumina and silica. The fluorocarbon partial pressure in the treatment vapor may be in the range of from about 0.001 to about 100 atmosphere. By the practice of the instant invention high surface area metal fluoride extrudates are prepared by the conversion of metal oxide extrudate, particularly aluminum fluoride extrudates from alumina extrudates.
Abstract:
A method is described for the preparation of high surface area metal fluorides and metal oxyfluorides comprising reacting high surface area metal oxides with a fluorocarbon vapor wherein the fluorocarbon is selected from the group consisting of CH.sub.4-Q F.sub.Q wherein Q is 1 to 3 and totally or partially fluorinated C.sub.2 -C.sub.6 alkanes, alkenes and alkynes and C.sub.5 -C.sub.6 cyclic alkanes, preferably fluoroform (CHF.sub.3) wherein the metal oxides and the fluorocarbon vapors are contacted at a temperature of from about 300.degree. to about 800.degree. C., for a time sufficient to effect the essentially complete conversion of the metal oxides into metal fluorides or the partial conversion of the metal oxides into metal oxyfluorides. The metal oxides converted into metal fluorides may be selected from the group consisting of the oxides of sodium, potassium, lithium, cesium, magnesium, calcium, barium, strontium, tin, antimony, bismuth, titanium, zirconium, vanadium, chromium, manganese, iron, cobalt, rhodium, mercury, nickel, copper, silver, zinc, cadmium, lead, uranium, europium, idium, lutetium, neodymium, thallium and mixtures thereof. The metal oxides converted into metal oxyfluorides may be selected from the group recited above and further include silicon, niobium, hafnium, tantalum, molybdenum, tungsten, technetium, rhenium, osmium, iridium, lanthanum and ruthenium. The above metal oxides may also be utilized in combination with alumina and silica. The fluorocarbon partial pressure in the treatment vapor may be in the range of from about 0.001 to about 100 atmosphere. By the practice of the instant invention high surface area metal fluoride extrudates are prepared by the conversion of metal oxide extrudate, particularly aluminum fluoride extrudates from alumina extrudates.
Abstract:
A process for treating a feedstock comprising tantalum- and/or niobium-containing compounds is provided. The process includes contacting the feedstock with a gaseous fluorinating agent, thereby to fluorinate tantalum and/or niobium present in the feedstock compounds. The resultant fluorinated tantalum and/or niobium compounds are recovered.
Abstract:
A method of producing an anhydrous niobium or tantalum pentafluoride involving reacting the corresponding pentoxide or oxyhalide with an excess of anhydrous hydrogen fluoride in the presence of a sufficient dehydrating agent (e.g., COCl.sub.2, SOCl.sub.2 or SO.sub.2 Cl.sub.2) to react with any water formed. Such a process is useful to produce a catalyticallyactive anhydrous niobium or tantalum pentafluoride in essentially a single liquid phase reaction step.
Abstract:
Disclosed is a process for dissolving tantalum and/or columbium-containing materials contaminated with alkali metal impurities. The tantalum and columbium materials are digested in a solution comprising hydrofluoric acid and a fluosilicate-containing compound. The alkali metals are reacted to form precipitated fluosilicates, which then can readily be separated.