Abstract:
Aerogel materials, aerogel composites, and the like may be improved by the addition of opacifiers to reduce the radiative component of heat transfer. Such aerogel materials, aerogel composites, and the like may also be treated to impart or improve hydrophobicity. Such aerogel materials and methods of manufacturing the same are described.
Abstract:
A method of calcination includes providing a raw material including whitlockite Ca9(Mg,Fe2+)[PO3(OH)|(PO4)6], and/or iron phosphate FePO4, and/or aluminium phosphate AlPO4 and/or fluorapatite Ca5(PO4)3F; providing an alkaline-sulfuric compound as an additive; and calcining a mixture of the raw material with the additive to obtain a product, including a citrate soluble phosphate compound.
Abstract:
An electrolyte for a rechargeable lithium battery including a lithium salt, a non-aqueous organic solvent, and an additive, wherein the additive includes a compound represented by Chemical Formula 1 and a rechargeable lithium battery including the same.
Abstract:
The present arrangement provides compounds (I) AaMm(YO4)yZz(I) that are obtained from precursors of the constituent elements by a method having steps that can include dispersion of the precursors in a liquid support having one or more ionic liquids made up of a cation and an anion the electric charges of which balance out to give a suspension of the precursors in the liquid. The suspension is heated to a temperature of 25 to 380° C. and the ionic liquid and the inorganic oxide of formula (I) are separated from the reaction of the precursors.
Abstract:
A method for the synthesis of rare earth containing phosphates of the LaPO4:Ce,Tb type comprising providing an initial charge of phosphate having a pH above 2 to a reactor; subsequently commencing introduction of a rare earth solution to the reactor, and subsequently, continuing to introduce both the phosphate and the rare earth solution to the reactor to form a mixture; whereby a rare earth phosphate precipitate is produced, at least a portion of which is precipitated while the pH of the mixture is less than 2.
Abstract:
Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.
Abstract:
A process for recovering reusable materials, in particular phosphate, from sewage sludge products, namely sewage sludge, sewage sludge ash or sewage sludge slag, by extraction, in which a suspension of the sewage sludge product is produced in water, alcohol, water-alcohol mixture or an aqueous solution, gaseous carbon dioxide (CO2) or supercritical carbon dioxide (scCO2) is introduced as an extraction agent into the suspension of the sewage sludge product, undissolved solids are separated from the liquid suspension agent, carbon dioxide is removed from the suspension agent, and reusable materials dissolved in the suspension agent are precipitated and separated from the suspension agent.
Abstract:
A material comprising a plurality of nanoparticles. Each of the plurality of nanoparticles includes at least one of a metal phosphate, a metal silicate, a metal oxide, a metal borate, a metal aluminate, and combinations thereof. The plurality of nanoparticles is substantially monodisperse. Also disclosed is a method of making a plurality of substantially monodisperse nanoparticles. The method includes providing a slurry of at least one metal precursor, maintaining the pH of the slurry at a predetermined value, mechanically milling the slurry, drying the slurry to form a powder; and calcining the powder at a predetermined temperature to form the plurality of nanoparticles.
Abstract:
Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.