Abstract:
A method is provided for manufacturing pigments of defined size and shape, and to pigments manufactured accordingly. The method has the steps of: a) producing a three-dimensional surface structure on a substrate, where surface regions are formed each having a gradient extending obliquely to a base level of the surface structure, and are arranged in columns which are offset relative to one another; b) applying a pigment material layer on the surface structure; c) releasing the pigment material layer from the surface structure and producing pigments.
Abstract:
A nanoelectronics structure is disclosed which includes a substrate layer which has least a first surface and also has a thickness of less than 100 nm. The nanoelectronics structure also includes a dielectric layer, which is deposited on the first surface of the substrate layer and has a thickness of less than 100 nm. This dielectric layer is made up of at least 90 mole percent amorphous boron nitride. Also disclosed is a method for forming a dielectric layer on a substrate using pulsed laser deposition.
Abstract:
A method for forming a functional part in a minute space includes the steps of: filling a minute space with a dispersion functional material in which a thermally-meltable functional powder is dispersed in a liquid dispersion medium; evaporating the liquid dispersion medium present in the minute space; and heating the functional powder and hardening it under pressure.
Abstract:
Polypeptide nanopores synthetically functionalized with positively charged species, and methods of making and using the same, are provided herein. In some examples, a polypeptide nanopore includes a first side, a second side, a channel extending through the first and second sides, and a mutated amino acid residue. The mutated amino acid residue may be synthetically functionalized with a positively charged species that inhibits translocation of cations through the channel.
Abstract:
A method of making a thin film substrate involves exposing carbon nanostructures to a crosslinker to crosslink the carbon nanostructures. The crosslinked carbon nanostructures are recovered and disposed on a support substrate. A thin film substrate includes crosslinked carbon nanostructures on a support substrate. The crosslinked carbon nanostructures have a crosslinker between the carbon nanostructures. A method of performing surface enhanced Raman spectroscopy (SERS) on a SERS-active analyte involves providing a SERS-active analyte on such a thin film substrate, exposing the thin film substrate to Raman scattering, and detecting the SERS-active analyte.
Abstract:
The present invention provides a method to manufacture nanowires. In various embodiments, a method is provided for producing an oxidized metal layer as a heterogeneous seed layer on arbitrary substrate for controlled nanowire growth is disclosed which comprises depositing a metal layer on a substrate, oxidizing the metal layer in air ambient or in oxidizing agent, and growing nanowires at low temperatures on oxidized metal layers on virtually any substrate.
Abstract:
An antenna system includes an elongated conductive plane and an elongated dielectric layer that is disposed on the conductive plane. An elongated graphene nanoribbon is disposed along an axis and is coupled to the dielectric layer at a graphene/dielectric interface. A feeding mechanism is coupled to the conductive plane. The feeding mechanism is configured to accept a signal that excites surface plasmon polariton waves at the graphene/dielectric interface. In a method of making a surface plasmon polariton wave antenna, an elongated conductive plane is formed. An elongated dielectric layer is applied on a surface of the conductive plane. An elongated graphene nanoribbon is applied to the dielectric layer. A signal source is coupled to the elongated conductive plane.
Abstract:
Processes for creating build sequences are described which use computational chemistry algorithms to simulate mechanosynthetic reactions, and which may use the mechanosynthesis process conditions or equipment limitations in these simulations, and which facilitate determining a set of mechanosynthetic reactions that will build an atomically-precise workpiece with a desired degree of reliability. Included are methods for error correction of pathological reactions or avoidance of pathological reactions. Libraries of reactions may be used to reduce simulation requirements.
Abstract:
There is provided a method for preparation of oxide support-nanoparticle composites, in which metal nanoparticles decorate with uniform size and distribution on the surface of an oxide support, and thus, high performance oxide support-nanoparticle composites that can be applied in the fields of heterogeneous catalysis can be provided.
Abstract:
Methods, systems, and devices are described which facilitate mechanosynthesis through the sequential use of a plurality of tips, each of which may have a different affinity for feedstock, thereby allowing tip to tip transfers which enhance system versatility and reduce equipment complexity.