Abstract:
A conveyor system and method for spreading a mass of electrically conductive articles, such as aluminum cans, being transferred from an infeed conveyor to a wider discharge conveyor. A transfer device between the infeed and discharge conveyors uses linear induction to propel and spread electrically conductive articles across a continuous transfer surface with or without the aid of backpressure or mechanical spreading means.
Abstract:
The present disclosure provides a system for transporting work pieces from one location to another. The system uses either magnetic force or vacuum, or both, to lift and retain the work pieces against the moving overhead conveyor belt. The system can interrupt the magnetic force and/or the vacuum to release the work pieces from against the moving overhead conveyor belt at a desired transport location.
Abstract:
A magnetic lifting device for bodies (Z) comprises an input transport device (10) for transporting lying bodies (4), a transport device (12) for transporting lifted bodies (9) hanging at the transport device (12) and arranged above the input transport device (10) and a control device (13). A first magnet arrangement (1) which is activated and deactivated by the control device (13) is arranged below the input transport device (10) in such a way that a body (4) lying on the input transport device (10) is magnetically held in a releasable way on the input transport device (10). A second magnet arrangement (2) is arranged above an area of the input transport device (10), in which the bodies are transported, and is formed in such a way that a body lying on the input transport device (10) is lifted by the magnetic field of the second magnet arrangement (10) when the magnetic field of the first magnet arrangement (1) is deactivated. A third magnet arrangement (3) is provided above the transport device (12) and is formed and arranged in such a way that a partially lifted body (4a) is lifted more and is lifted off the input transport device (10) and is transported in an upright position hanging magnetically at the transport device (12). The control device (13) is adapted to activate the first magnet arrangement (1) when a front edge of a body (4) lying on the input transport device (10) has passed the second magnet arrangement (2) and to deactivate the first magnet arrangement (1) when a trailing edge of this body (4) comes to lie below the second magnet arrangement (2).
Abstract:
A conveyor and method for moving articles comprising a conductive material across a conveying surface using a touchless guide device disposed adjacent to a product path. The guide device generates a repelling force on a conveyed product to propel the conveyed product along the product path. Embodiments of the guide device include a linear induction motor and an array of alternating permanent magnets.
Abstract:
A conveying device for moving a carrying plate includes a pulling mechanism in the form of a belt. To pull the carrying plate, the belt is contacted against the carrying plate via a magnetic force of at least one permanent magnet. The carrying plate is then entrained by the belt as a result of static friction or sliding friction.
Abstract:
A device for conveying closures (D) made from metallic sheet in an essentially vertical direction from a collecting point (1) to a release point (6) is proposed. The closures are selected to be in correct position during conveying in order to release at the release point (6) only same-lying closures in a row of closures following one another closely. A conveyer belt (10) serves for the transport (v1, v2) of the closures. A sensor and discharge device (17, 16, 19, 18; 3) serves for detecting wrong-position closures and for lateral discharge (q1, q2) of individual wrong-position closures. In the course of the conveyer belt (10) upstream of the sensor and discharge device, a bar (15) is arranged above the conveyer belt, which terminates after the sensor and discharge device (17, 16, 19, 18; 3). More than one row (R1, R2) of closures next to one another may be supplied separately to the sensor and discharge device (17, 16, 19, 18; 3). The performance itself is thus increased if the speed of the belt (10) is reduced. Performance is understood to mean the number of conveyed lids/minute which hitherto reached an order of magnitude of about 800 lids/minute.
Abstract:
The object of the present invention is related to a machine for transporting and piling sheeting, especially designed for transporting and piling sheets of both magnetic and non-magnetic material such as aluminium, stainless steel, etc. The sheets, once they are cut in a press, are transported to the transport position at the start of the installation; from there they are lifted and transferred onto the piling and transport machine. These sheets move in suspension by way of a conveyer belt, the machine being provided with a double system for the suspension of the sheets by way of electromagnets assembled along the path the magnetic sheets move along and by way of a vacuum suction system, also assembled along the movement path of non-magnetic sheets of aluminium or stainless steel.
Abstract:
A device for the transport of flat, in particular platelike objects (2, 2'), with a driven transport band (4, 4') which revolves around a transport band body (3, 3') and on which the objects (2, 2') come to bear during transport, the transport band being provided with intake orifices capable of being loaded with a vacuum by a vacuum system, in such a way that suspended or horizontal transport of magnetic and nonmagnetic flat, in particular platelike objects at high speeds and accelerations becomes possible, via a combined vacuum-magnetic system.
Abstract:
A magnetic transport system (8) has at least one magnetic transport roller (20) mounted to a frame (10) for conveying a ferromagnetic web (12). The transport roller (20) has a magnetic core (22), a first bonding layer (24) at least partially surrounding and bonded to the core (22), a first layer (26) at least partially surrounding and bonded to the first bonding layer (24), a second bonding layer (28) for bonding second layer (30) to the core (20). Second layer (30) comprises a wear and abrasion resistant material. Further, a ferromagnetic web (12) is arranged for movement along the magnetic transport roller (20) for transporting materials thereon.
Abstract:
A device for grasping and transporting objects, wherein the device has a plurality of plate-shaped supports combined into a rotating conveyer chain. Each support has at least one suction opening on a transport side of the support, which is connected over at least a portion of a transport path. A fixed suction conduit can be sealed airtight against the atmosphere. Each suction opening is in communication with a supply of suction air or compressed air. The supports are adjustably guided in guide rails which receive edges of the supports that extend parallel to a direction of conveyance. The suction openings are formed as elongated holes within the supports. The elongated holes are aligned in the direction of conveyance. The elongated holes are sealingly connected on a side facing away from the transport side with a fixed suction conduit that extends along the transport path. The suction conduit is formed as a conduit rail and encloses the elongated holes with front faces of the two side legs. The side legs are supported on either the supports or connecting strips which are fastened on the supports. Enlarged holes correspond to the elongated holes and make a transition into the elongated holes.