Abstract:
A railway facility with high throughput loop track includes a series of adjacent parallel staging tracks connected to a main line to receive and depart trains, arranged in a path so that trains transverse around the railway facility. A balloon loop track, which includes a loading or unloading facility, is connected to the staging tracks loops and reverses the direction of the train so that upon completion of loading or unloading a train can depart or be re-staged without requiring repositioning or turning of locomotives. Staging tracks are included for staging both arriving and departing trains. In alternative embodiments transload tracks and at-grade access roads allow storage and retrieval of cargo to interior space within the staging tracks, and an escape track allows expedited exit of trains from the balloon loop track.
Abstract:
A method of delivering proppant to a well site has the steps of transporting a load of proppant in a vessel to a desired location, moving the load of proppant from the vessel into a container so as to create a proppant-loaded container, unloading the proppant-loaded container into a pneumatic bulk trailer, and transporting the unloaded proppant in the pneumatic bulk trailer to well site. The container is placed onto a bed of a truck and moved in proximity to the vessel. The proppant-loaded container is placed onto a tilting mechanism and then tilted so that the proppant is discharged through a flow gate of a container into a hopper. The proppant in the hopper can then be conveyed to the pneumatic bulk trailer.
Abstract:
A method of delivering proppant to a well site has the steps of transporting a load of proppant in a vessel to a desired location, moving the load of proppant from the vessel into a container so as to create a proppant-loaded container, unloading the proppant-loaded container into a pneumatic bulk trailer, and transporting the unloaded proppant in the pneumatic bulk trailer to well site. The container is placed onto a bed of a truck and moved in proximity to the vessel. The proppant-loaded container is placed onto a tilting mechanism and then tilted so that the proppant is discharged through a flow gate of a container into a hopper. The proppant in the hopper can then be conveyed to the pneumatic bulk trailer.
Abstract:
A method of delivering proppant to a well site has the steps of transporting a load of proppant in a vessel to a desired location, moving the load of proppant from the vessel into a container so as to create a proppant-loaded container, unloading the proppant-loaded container into a pneumatic bulk trailer, and transporting the unloaded proppant in the pneumatic bulk trailer to well site. The container is placed onto a bed of a truck and moved in proximity to the vessel. The proppant-loaded container is placed onto a tilting mechanism and then tilted so that the proppant is discharged through a flow gate of a container into a hopper. The proppant in the hopper can then be conveyed to the pneumatic bulk trailer.
Abstract:
A device for transporting freight articles in a ground or rail haul operations comprises a hollow housing including four corner sections, side walls, two center sections defining four openings each disposed between one edge of a center section and an edge of a respective corner section, a bottom portion and a top portion, wherein the two center portions are manufactured from see through or clear material. A door is mounted to selectively open and close a respective opening and swinging outwardly and towards a respective corner portion to selectively open the respective opening. Two channels are provided in the bottom portion, each in open communication with opposite sides of the bottom portion. Four feet or wheels are mounted on the bottom portion. Four receptacles are provided in the top portion, each sized and shaped to receive a foot therewithin.
Abstract:
One embodiment of an automated system for carrying passengers between airport terminal or concourse facilities and parked aircraft is shown. The embodiment comprises PRT guideways (13, 14, 15, 23, 27), vehicles (21) and stations (22). Some PRT stations are linked to parked aircraft (11) or aircraft parking positions by means of conventional loading bridges (12), while others are linked to terminal or concourse buildings (15). Other embodiments are described and shown. The embodiments provide a high level of service while reducing the need to construct terminal or concourse buildings adjacent to each aircraft parking position.
Abstract:
This is a device by which certain areas of classification yards and railcar systems may be monitored via video capture in order to detect certain occupants in a particular area. This would ensure greater rail yard safety in terms of personal property and also minimize the risk of personal injury to a worker or the general population.
Abstract:
A method of transferring freight from a first location to a second location. The method comprises the steps of loading the freight onto a plate at the first location, the plate having an identifier linked to the freight, monitoring the movement of the plate using the identifier on the loaded plate, conveying the loaded plate onto a first transportation unit at the first location, transporting the loaded plate from the first location to an interim location using the first transportation unit, conveying the loaded plate from the first transportation unit onto a second transportation unit, transporting the loaded plate from the interim location to the second location using the second transportation unit, conveying the loaded plate from the second transportation unit at the second location, and unloading the freight from the plate.
Abstract:
An inline terminal system (300), which includes the steps of: (i) transporting (302) a first container with a cargo via an inbound railroad car to a terminal having a plurality of train rails; (ii) picking and placing (304) the first container from the railroad car to a track side location having at least one buffer in proximity to the plurality of train rails, including: (a) rotating the first container at an angle of at least ten or more degrees with respect to the train rails; and (b) positioning the at least one buffer substantially adjacent to the train rails, at the track side location, at an angle of at least ten or more degrees with respect to the train rails; and (iii) moving (306) the first container via a tractor truck to a desired location for unloading. This system provides a simple, robust and efficient method to load, and in the reverse unload, a container on a chassis or rail car, respectively.
Abstract:
This invention relates to the design of marshalling yard with up-grade speed control system. The principal difference between this yard and the conventional marshalling yard with down-grade only profile is described hereunder. Unlike the already known yard in which many speed control devices are installed on a down-grade to consume excess energy of cuts, the yard in the invention has hump height designed by taking operating conditions of moderate runners as a base and is provided with at least one up-grade speed control unit consisting of one up-grade section and a necessary number of boosters and retarders on the down-grade profile. This up-grade control unit could convert excess energy of cuts into potential energy. The invention could raise hump operating capacity of marshalling yard at a considerably reduced cost.