Abstract:
A method of providing wireless power transfer can include receiving multi-phase power at a transmitter portion of a multi-phase wireless power transfer system that is associated with an electrical equipment rack that is configured to house a plurality of electrical components and wirelessly transferring the multi-phase power from the transmitter portion to a receiver portion of the multi-phase wireless power transfer system at a power level that is configured to operate the plurality of electrical components.
Abstract:
A lubricating oil temperature sensor to detect a temperature of a lubricating oil is provided in a lubricating oil passage in a speed reducer, a coil temperature sensor to detect a temperature of a motor coil is provided in a stator of an electric motor, and a rotation speed detection sensor to detect a rotation speed of the electric motor is provided. A control device includes: an abnormality detector to detect an abnormality in the lubricating oil temperature sensor; and a lubricating oil temperature estimator to estimate the temperature of the lubricating oil on the basis of a determined relationship using the temperature detected by the coil temperature sensor and the rotation speed detected by the rotation speed detection sensor, when the abnormality detector detects the abnormality in the lubricating oil temperature sensor.
Abstract:
A universal traction device for movement over even and uneven supporting surfaces that includes an all-terrain wheel having a circular wheel assembly with a plurality of spoke-containing components arrayed around an outer perimeter wheel edge and control means for extending spokes from the spoke-containing units when encountering an obstacle that the vehicle is to traverse and retracting the spokes when the spokes are no longer required for traversing the obstacle.
Abstract:
A method is provided for controlling an electrical system. A first characteristic value of the electrical system is determined. For the first characteristic value, a suitable first group of optimizing variables is determined. A first group of command variables suitable for the first group of optimizing variables is determined. For the first group of command variables, a first group of current boundary values is determined. For each boundary value of the first group of current boundary values, a prediction is made to obtain a first group of predicted boundary values. A probability is assigned to each predicted boundary value of the first group of predicted boundary values to obtain a first group of predicted, probability-related boundary values. All boundary values of the first group of current boundary values and of the first group of predicted, probability-related boundary values are prioritized in order to obtain prioritized boundary values. The prioritized boundary values are used to calculate at least one control value with which the system may be controlled.
Abstract:
An electric vehicle may comprise a board including deck portions each configured to receive a foot of a rider, and a wheel assembly disposed between the deck portions. A motor assembly may be mounted to the board and configured to propel the electric vehicle using the wheel assembly. At least one orientation sensor may be configured to measure orientation information of the board, and at least one pressure-sensing transducer may be configured to determine rider presence information. A motor controller may be configured to receive the orientation information and the rider presence information, and to cause the motor assembly to propel the electric vehicle based on the orientation and presence information.
Abstract:
A vehicle system according to an exemplary aspect of the present disclosure includes, among other things, a DC/DC converter bus adapted to operate at a first voltage set-point and a low voltage battery bus adapted to operate at a second voltage set-point different from the first voltage set-point.
Abstract:
A battery pack discharging device having a hand-held member and a docking device are provided. The hand-held member has a handle portion, first and second extension members, first and second conductive members, and a resistor. The resistor is disposed in the handle portion between the first and second conductive portions. The device further includes a docking device having a housing and first and second contact members. The first and second extension members are disposed in the first and second apertures, respectively, of the docking device such that the first and second conductive members contact the first and second contact members, respectively.
Abstract:
An electromotive drive device including a small motor and a small-capacity battery more effectively improves the fuel economy of an engine-driven vehicle. An electromotive drive device includes: a motor for driving a vehicle; a battery storing electrical energy to rotate the motor; an inverter; a converting mechanism transmitting rotation of the motor to a drive shaft at a predetermined conversion ratio independently of a conversion ratio at which an engine is driven; and a control unit controlling an operation of the inverter. The control unit is configured so that upper vehicle speed limits, to which the motor is allowed to operate, can be set separately during powering and during regeneration, respectively.
Abstract:
The invention is an apparatus for generating power using inertia of a load in a moving vehicle. The apparatus includes a vessel having a volume that is capable of an expansion and a contraction, and containing a fluid under a pressure. The fluid is released from the vessel as a force is exerted by the load of the vehicle against the vessel. The apparatus includes a reservoir, operably connected to the vessel by fluid conduit. The reservoir contains the fluid under pressure until an optimum pressure is reached at which point the reservoir releases the fluid to a power generator. The power generator then generates electrical power. Excess fluid released from the power generator then returns to the vessel.
Abstract:
A system and method are provided for defining, optimizing, and controlling taxi profiles for aircraft equipped with onboard non-engine drive means controllable to drive one or more nose or main landing gear wheels to drive an aircraft autonomously during taxi. An onboard taxi profile control system may employ smart software to determine selected taxi operational data at an airport and use this data to control and maintain torque of the drive means at desired selected levels that move the aircraft during taxi in response to determined taxi data or predetermined programmed taxi parameters. The system is designed to set default taxi profiles for each taxi cycle to achieve efficient aircraft taxi and to extend operational life of drive means components. Taxi profiles are modified and updated at periodic intervals or in real time in response to actual taxi conditions to optimize aircraft taxi at a specific airport.