Abstract:
A drying oven for crosslinking a continuous mat of mineral or plant fibers includes a plurality of heating boxes through which the mat of fibers successively passes. At least one of the boxes includes, between an external insulating jacket of the drying oven and a central compartment of the box, an in-built hot-gas heating and recirculation device that includes at least one radial turbine mounted horizontally, the axis of rotation of which is arranged vertically, the turbine drawing hot gas along the axis through a gas outlet orifice of the central compartment after it has passed through the mat, and discharging it radially toward a recirculation device that recirculates the hot gas leaving the radial turbine to a gas inlet orifice of the compartment, and at least one heating device for heating the gas circulating in the box.
Abstract:
Method for producing a fibrous product comprising: passing a texturized yarn (10) through a first passage (12) having a first outlet (14); projecting the texturized yarn (10) from the first outlet (14), inside a chamber (20), so as to fill the chamber (20) with the texturized yarn (10), thereby forming a first segment (31) of the fibrous product; moving the first segment (31) away from the first outlet (14); and forming a second segment (32) of the fibrous product in place of the first segment (31) and contiguously to the first segment (31), as many segments as necessary being contiguously formed by repeating the above steps. Apparatus for implementing the method.
Abstract:
A method of directing extruded synthetic fibers toward at least one surface of a mineral fiber insulation batt, and corresponding apparatus and resulting product. In certain embodiments, a row of extrusion heads is provided for directing extruded synthetic fibers (e.g. fibers including ethyl vinyl acetate or EVA) toward a surface(s) of the batt(s) to be impregnated with same. Optionally, extrusion heads may be provided all around the batts so as to impregnate substantially all surfaces thereof with the extruded synthetic fibers. As the fibers exit the heads, they are hit with pressurized heated air streams which cause them to go into an insipid spin which increases directional tensile strength of the resulting batt in all directions. In certain embodiments, every other batt of a plurality of batts passes over an elongated member which extends over top of the conveyor in order to more efficiently impregnate edge surfaces of the batts.
Abstract:
A method of directing extruded synthetic fibers toward at least one surface of a mineral fiber insulation batt, and corresponding apparatus and resulting product. In certain embodiments, a row of extrusion heads is provided for directing extruded synthetic fibers (e.g. fibers including ethyl vinyl acetate or EVA) toward a surface(s) of the batt(s) to be impregnated with same. optionally, extrusion heads may be provided all around the batts so as to impregnate substantially all surfaces thereof with the extruded synthetic fibers. As the fibers exit the heads, they are hit with pressurized heated air streams which cause them to go into an insipid spin which increases directional tensile strength of the resulting batt in all directions. In certain embodiments, every other batt of a plurality of batts passes over an elongated member which extends over top of the conveyor in order to more efficiently impregnate edge surfaces of the batts.
Abstract:
A method of manufacturing/making mineral fiber (e.g. fiberglass) thermal insulation batt is disclosed wherein a base mineral fiber layer is impregnated with a two-layer layering system so as to produce a batt which is substantially vapor impermeable with a perm vapor rating less than about one. The first layer of the layering system is of a low melt material while the second layer is of a high melt material, the first layer being sandwiched between the base insulating layer and the second layer, and functioning to bond the layering system to the base. In certain embodiments, the first layer includes quick blooming ethyl vinyl acetate (e.g. from about 10-25% by weight) and a low density (e.g. 22-26 lbs. per cubic foot) polyethylene, and the second layer includes high density (e.g. 28-38 lbs. per cubic foot) polyethylene. The resulting insulation batt is vapor impermeable, less susceptible to cold-crack, easier to manufacture, fire retardant, more durable, and easier to handle.
Abstract:
A process for manufacturing mineral wool products according to which the mineral wool is collected to form a mattress on a conveyor belt, carried to a conforming and binder polymerizing chamber consisting of two complementary calibrating and transport conveyors consisting of a plurality of articulated perforated elements of pallet type. The speeds of the two conveyors are different, the difference in speed corresponding along the entire length of the chamber to a staggering of a length equivalent to at least the width of one pallet so that one of the faces of the mattress is smoothed during conformation of the mineral wool product.
Abstract:
The disclosure embraces a method of spraying a binder composition of hybrid character containing both organic and inorganic materials into a fiber-forming hood or chamber onto glass fibers produced by a fiber-forming process, the disclosure embracing fibrous insulation products, such as pipe insulation and block insulation, the products embodying hybrid binder composition wherein the organic phase of the binder composition improves moldability and handleability of the fibrous product during processing and installation and which provides hardness and toughness characteristics in the products to resist or prevent handling damage and physical damage in use, the inorganic phase of the binder system providing high bond strength and improved thermal stability in the product particularly under high temperatures which may volatilize the organic binder, the inorganic phase of the binder system preventing or resisting fiber slump under high temperature conditions.