Abstract:
A system for preforming a sheet of plastic material (MP) including a first element forming a preforming cavity, the system including a second element adapted to be positioned opposite the first element, a set of pressing means sequentially actuated and carried by the second element to apply pressure locally to the sheet of plastic material (MP), so as to press this sheet (MP) against the first element, at least one means for sequential actuation of the pressing means.
Abstract:
A method of forming a flat composite charge into a contoured composite part reduces wrinkles in the part as the charge is being formed. Dies are used to form a portion of charge to the steepest contour of the part, while tension is maintained on the charge as the remaining portions of the charge are formed.
Abstract:
The invention relates to a method of producing reinforced, formed fabrics, consisting in producing a continuous fabric alternated with a membrane (34) containing embedded reinforcing elements, which is prepared in overlapping portions on a conveyor belt (29) which passes over a preparation table (25). The membrane (34) and the reinforcing elements are then positioned under a press consisting of an upper air-filled chamber (1), the lower part thereof comprising a flexible element (4), and a lower water-filled chamber (14), the upper part thereof comprising a flexible element (17). According to the invention, a forming bar (10) is adjustably mounted in the upper chamber (1). When the aforementioned forming bar (10) is adjusted to adopt a particular shape, the different flexible elements can deform at the forming bar and the membrane and the reinforcing elements are hot pressed with a portion corresponding to the forming bar having a three dimensional shape, thereby defining the form of the fabric produced.
Abstract:
The method and system for rapid press forming and consolidation of a sheet of thermoformable material provides for molding of articles with complex shapes. The sheet of thermoformable material is suspended on a movable frame and transferred on a track to a preheating and preconsolidation station, where it is heated, and rapidly transferred suspended on the movable frame via the track to a molding and consolidation station for rapid press forming and consolidation with a hydraulic punch that applies pressure uniformly in all directions, to substantially eliminate wrinkles in the formed product.
Abstract:
The technical problem of this invention is to establish a method of processing a synthetic resin tube, in which the shape of a part of the tube wall is changed to form easily an attractively hollowed and/or raised portion in a fairly wide area of the tube wall. The object of this invention is to provide a tubular container having excellent decorativeness, appearance, or functionality that has never been found before. A method of processing a synthetic resin tube comprises utilizing a mandrel having a mold portion, which has at least a shape selected from a hollowed shape, a raised shape, and a hollowed and raised shape formed in a part of outer surface of the mandrel, and which is also provided with small through-holes in this mold portion; inserting a bottomed cylindrical mandrel into a synthetic resin tube, while bringing the inner wall of the tube in contact with the mandrel; heating and softening the tube in the portion facing the mold portion; deaerating the tube via a central opening and the through-holes to mold the softened portion of the tube in a manner similar to vacuum molding; and forming in the tube wall at least one of the portions selected from a hollowed portion, a raised portion, and a hollowed and raised portion.
Abstract:
The invention relates to a method of producing reinforced, formed fabrics, consisting in producing a continuous fabric alternated with a membrane (34) containing embedded reinforcing elements, which is prepared in overlapping portions on a conveyor belt (29) which passes over a preparation table (25). The membrane (34) and the reinforcing elements are then positioned under a press consisting of an upper air-filled chamber (1), the lower part thereof comprising a flexible element (4), and a lower water-filled chamber (14), the upper part thereof comprising a flexible element (17). According to the invention, a forming bar (10) is adjustably mounted in the upper chamber (1). When the aforementioned forming bar (10) is adjusted to adopt a particular shape, the different flexible elements can deform at the forming bar and the membrane and the reinforcing elements are hot pressed with a portion corresponding to the forming bar having a three dimensional shape, thereby defining the form of the fabric produced.
Abstract:
A body protecting device for wearing by a user comprising an array of energy absorbing cells, wherein each cell comprises a tube, and wherein substantially each tube has a side wall which is near or adjacent to the side wall of at least another tube, and wherein substantially each tube is configured such that the orientation of the tube is substantially maintained when a load is applied parallel to the axis of the tube.
Abstract:
A thermoplastic composite sheet is used as a tool or tool liner for thermoforming thermoplastic composite sheets into parts having uneven sections. A more uniform consolidation of the part is achieved that has not been previously attainable in open mold processing at high forming temperatures.
Abstract:
A drawing punch for use in drawing foils in a die which converges in the direction of drawing. The punch has a rigid core, a cylindrical elastic body on the core and surrounding the core with a cavity therein around the core and opening out of the end of the body facing the direction of drawing. A rigid support member is provided on the core against which the other end of the body is supported. The radial cross-sectional area of the cylindrical elastic body increases from the firstmentioned end of the body toward the other end, and the peripheral surface of the cylindrical elastic body is at a positive angle to the axis of the punch of from 0.degree. to 20.degree.. The cavity has a volume which becomes zero just before the end of the stroke of the punch into the die.
Abstract:
A backing for a disposable diaper being a combination of two layers. The first layer is a low void volume perforated thermoplastic film. The second layer is a porous high void volume hydrophobic tissue which is adjacent the first layer.