Abstract:
A hollow container producing device for producing a hollow container using a pair of parison sheets is provided. The hollow container producing device includes a pair of molds; an intermediate frame to be clamped to the pair of molds; and a transport unit that carries the intermediate frame and a pair of parison sheets to a position between the pair of molds, with the pair of parison sheets being respectively held on opposite sides of the intermediate frame.
Abstract:
Some embodiments are directed to an extrusion blow-molding method for the manufactures of blown objects with at least one label integrated in situ, and also including a robot implementing this method.
Abstract:
A rotary machine includes a main axis, a plurality of first stations and a plurality of second stations. Each first station rotates around the main axis and applies a first process to a container. Each second station rotates around the main axis and applies a second process to a processed container. The machine also includes an internal exit position, at which each first station is located once the first station has completed the first process and that is arranged to release the processed container. At an internal entry position, each second station is arranged to receive the released processed container. At least one transfer arm is adapted to seize a processed container and move the processed container between a first station located at the internal exit position and a second station located at the internal entry position.
Abstract:
A processing station of a container-processing machine includes an electromagnetic linear drive that raises and lowers a container carrier. The linear drive includes a tubular guide element having a stack of magnets extending through it. This guide element guides the motion of a guided element that has coils. Current through these coils generates a magnetic field that interacts with the field from the tubular guide's magnets. This interaction yields a force that can raise the carrier.
Abstract:
A container treatment plant and a method for displacing an element of a valve or a diverting unit of a container treatment plant. The container treatment plant comprises at least one element for treating containers. The element is part of a valve or a diverting unit. The container treatment plant also comprises a displacing unit for displacing the element between a first position and a second position, wherein the displacing unit comprises a magnetically operating actuator such that a rotary motion caused by the actuator displaces the element with the aid of a mechanism between its first and second positions.
Abstract:
In manufacturing a hollow molded article by an apparatus for manufacturing a hollow molded article, a pair of molding dies and another pair of molding dies disposed to position a sheet-like parison therebetween are provided, and the sheet-like parison is transformed into a predetermined shape. Built-in parts are fixed by piston portions to the transformed sheet-like parison, then, at a position between a portion transformed by the pair of molding dies and another portion transformed by the other pair of molding dies, the sheet-like parison is cut by a cutter. After this cutting, predetermined molding dies are faced each other to be clamped. Thereby, both of transformed sheet-like parisons are joined together to manufacture a hollow molded article.
Abstract:
Disclosed is a mold for forming a deep grip container, the mold having drive mechanisms opposably to drive moveable inserts into the mold. The drive mechanisms may be located entirely within the mold and may include a slotted cam. Also disclosed is a method of manufacturing a blow molded bottle with a deep pinch grip comprising: providing a mold hanger having an outer envelope and providing within the outer envelope a drive mechanism to drive moveable inserts into the mold after blowing molten plastic into contact with the mold. Further disclosed is a blow molded bottle with a deep pinch grip manufactured according to the disclosed methods.
Abstract:
In various embodiments, a molded product delivery apparatus or a blow molding machine includes a first transfer member that includes first paired chucks that hold a portion of an outer wall of a neck portion of a molded product, and a second transfer member that includes second paired chucks that hold another portion of the outer wall of the neck portion of the molded product. From a state where the molded product is held by both of the first paired chucks and the second paired chucks simultaneously, by opening one of the first paired chucks and the second paired chucks without interfering with the other, the molded product is delivered between the first paired chucks and the second paired chucks.
Abstract:
A transport system for containers includes a plurality of vehicles configured to be driven independently of each other. A guiding device is configured to guide the vehicles in a circulating manner. A plurality of mold shells are configured to encompass a side wall of the containers about a partial circumferential area of the side wall, the plurality of mold shells being mounted on respective ones of the plurality of vehicles so as to receive the containers between adjacent mold shells of adjacent vehicles and transport them.
Abstract:
An apparatus for producing plastic containers includes a heating module that heats plastic preforms and a molding module for molding the preforms into containers. The heating module includes a first transport unit that transports the preforms during the heating and a first interface. The molding module is downstream of the heating module in the transport direction and includes a blow molding unit for applying a flowable medium onto the preforms for expansion thereof, a second transport unit that transports the preforms during the expansion, and a second interface. The first and second interfaces allow a mechanical connection and an electrical connection between the modules such that the molding module may be disposed on the heating module and at least one further module integrated between the heating and molding modules. The further module treats the preforms following the heating and prior to the molding.