Abstract:
An apparatus for measuring alignment of a welding gun comprises a case comprising an interior space and an open side, a supporting member mounted to the interior space, an upper block comprising a first end fixed to the supporting member, formed with an upper tip insertion hole at a second end, hinge-engaged with an upper pin mounted to the case and configured to rotate when an upper tip is misaligned, an upper sensor unit mounted adjacent to the upper block to detect rotation of the upper block, a lower block having a first end fixed to the supporting member, formed with a lower tip insertion hole at a second end, hinge-engaged with a lower pin mounted to the case, and configured to rotate when a lower tip is misaligned, and a lower sensor unit mounted adjacent to the lower block configured to detect rotation of the lower block.
Abstract:
A method of projection welding hardware to a plated steel sheet for hot stamping, may include pressing hardware and a plated steel sheet in a state in which a welding projection on the hardware is in contact with the plated steel sheet, supplying a primary current to the hardware and the plated steel sheet in a state in which they are pressed, and supplying a secondary current to the hardware and the plated steel sheet.
Abstract:
A resistance welding device is provided with a moving distance measuring section for measuring distances between conductors to be joined before and after joining and evaluating joining quality based on the distances, and a projection including a base and a projecting surface is provided to the conductor to be connected in order to easily secure a distance between the conductors after the joining.
Abstract:
A power supply unit for a resistance welding apparatus, said power supply unit comprising a converter circuit adapted to convert an alternating power supply current, AC, applied via a residual current protection circuit to an input of said converter circuit into a pulsed electrical current supplied from an output of said converter circuit to a primary coil of a transformer of said resistance welding apparatus, and at least one switching element provided between the output of said converter circuit and protective earth.
Abstract:
A spatter production information storage unit stores spots where spatter has been produced. For the spots where spatter has been produced, a comparison information generation unit acquires weld design information stored in a design information storage unit and weld instruction information stored in an instruction information storage unit, compares both pieces of information, and generates comparison information. An image information output unit outputs the generated comparison information to a display device. The display device displays the comparison information on a screen so as to allow checking by an operator. Hence, it is possible to check, on the screen, comparison information for weld instruction information and weld design information highly likely as a cause for spatter being produced, and to efficiently perform the task of analyzing the causes for spatter being produced.
Abstract:
A spot welding apparatus includes a robot, a spot welding gun, and a controller. The spot welding gun includes a gun arm, a fixed electrode, a movable electrode, and a gun-dedicated motor. The fixed electrode is fixed to the gun arm. The movable electrode is disposed on the gun arm at a position opposite a position at which the fixed electrode is disposed. The gun-dedicated motor is configured to move the movable electrode. The controller is configured to output a position command to the gun-dedicated motor so as to control the gun-dedicated motor to move the movable electrode, configured to control the fixed electrode and the movable electrode to hold a to-be-welded object under pressure between the fixed electrode and the movable electrode, and configured to subject the to-be-welded object to spot welding.
Abstract:
The service life of the power semiconductors of a resistance welding device largely determines the reliability of the installation in operation. The disclosure proposes a method for monitoring the remaining service life of power semiconductors that are exposed to current during the operation of a resistance welding device. The fact that, when there is a change of load of at least one power semiconductor, the change in a power semiconductor parameter is determined and the service life of the power semiconductor is determined while taking into consideration a setpoint selection that is representative of the remaining service life allows the reliability of the installation to be drastically improved.
Abstract:
A method and a device for controlling a thermal cycle of a weld joining one end of a first strip to an end of a second strip, suited to a joining machine of a strip treatment plant. The control device includes connections intended to connect the control device to a central automation system of the strip treatment plant and to the joining machine respectively, so as respectively to allow an exchange of at least one strip data item and an exchange of at least one operating data item. A computer is capable of computing, from the strip and operating data items, at least one thermal parameter of the weld. A weld control and characterization device is capable of controlling the welding as a function of the thermal parameter.
Abstract:
A system that facilitates dynamic configuration of a welding system with respect to a sensor comprises a processing unit associated with the welding system. A configuration component facilitates configuring the welding system with respect to the sensor upon determining that the sensor is coupled to a local bus associated with the processing unit. A remote access component can facilitate remotely accessing the welding system, the configuration of the welding system alterable by way of the remote access component.