摘要:
It is an object of the present invention to provide a sintered cBN compact having excellent wear resistance and fracture resistance even in machining centrifugally cast iron having a property of being difficult to machine, and to provide a sintered cBN compact tool. A sintered cBN compact of the present invention contains 20% by volume or more and 65% by volume or less of cBN and, as a binder, 34% by volume or more and less than 80% by volume of Al2O3, at least one selected from the group consisting of nitrides, carbides, carbonitrides, borides, and boronitrides of Zr and solid solutions thereof (hereinafter, referred to as “X”), and ZrO2, the total amount of X and ZrO2 being 1.0% by volume or more and 6.0% by volume or less, the volume ratio of ZrO2 to Al2O3, ZrO2/Al2O3, being 0.010 or more and less than 0.100, in which the ratio Itetragonal ZrO2(101)/IαAl2O3(110) is 0.1 or more and 3 or less, where Itetragonal ZrO2(101) is the intensity of the (101) plane of tetragonal ZrO2 and IαAl2O3(110) is the intensity of the (110) plane of αAl2O3 among X-ray diffraction peaks of the sintered cBN compact.
摘要翻译:本发明的目的是提供即使在具有难加工性能的离心铸铁的加工中也具有优异的耐磨性和耐断裂性的烧结cBN压块,并提供烧结的cBN压实工具。 本发明的烧结体cBN组合物含有20体积%以上且65体积%以下的cBN,作为粘合剂,为34体积%以上且小于80体积%的Al 2 O 3,选自 由Zr及其固溶体(以下称为X)的氮化物,碳化物,碳氮化物,硼化物和硼氮化物和ZrO 2组成的组中,X和ZrO 2的总量为1.0体积%以上6.0重量% 体积以下,ZrO 2与Al 2 O 3,ZrO 2 / Al 2 O 3的体积比为0.010以上且小于0.100,其中Itetragonal ZrO 2(101)/IαAl2 O 3(110)的比例为0.1以上且3以下,其中 四方晶ZrO2(101)是四方晶ZrO2的(101)面的强度,IαAl2O3(110)是烧结cBN压块的X射线衍射峰中αAl2O3的(110)面的强度。
摘要:
A face milling tool includes a tool body having an axial front end surface with several seats. Each seat has support surfaces for rotationally locking and supporting a tangential cutting insert in the seat. One of the support surfaces is a flat axial support surface for supporting the tangential cutting insert in an axial direction defined by the central rotation axis. The flat axial support surface extends perpendicular to the central rotation axis and is situated axially foremost in the seat. A side wall of each seat is formed out of round side support surfaces. Each tangential cutting insert includes an axial back side with a flat axial contact surface abutting the flat axial support surface and a projecting member extending axially from the flat axial contact surface and having a circumferential side surface forming out of round side contact surfaces abutting the out of round side support surfaces.
摘要:
A sintered body of the present invention is a sintered body including a first material and cubic boron nitride. The first material is partially-stabilized ZrO2 including 5 to 90 volume % of Al2O3 dispersed in crystal grain boundaries or crystal grains of partially-stabilized ZrO2.
摘要:
In a pilot hole of a workpiece made of a difficult-to-cut cast iron, a cutting tool having a leading end to which a cutting insert is attached is inserted to cut the surface of the wall of the pilot hole. At this time, the cutting tool rotates about an axis (α) and also revolves about another axis (β), so that contouring is performed on the workpiece by the tool. The cutting insert is formed of a sintered body having a CBN content of not less than 85% by volume, and the cutting insert has a thermal conductivity of not less than 100 W/(mK).
摘要:
An indexable insert for milling includes a metal base made of cemented carbide, and a cutting edge consisting of a sintered CBN compact and a flat drag type cutting edge which are brazed to the metal base or bonded thereto by integral sintering. A subcutting edge angle (.beta.), a negative land angle (.theta.) and a negative land width (L) are set at 30.degree. to 60.degree., 30.degree. to 45.degree. and 0.05 to 0.40 mm respectively, while the subcutting edge has a straight shape. Due to this structure, the indexable insert has excellent cutting performance particularly in face milling of parts which are made of gray cast iron, and the tool life can be extended.
摘要:
A sintered body of the present invention is a sintered body including a first material and cubic boron nitride. The first material is partially-stabilized ZrO2 including 5 to 90 volume % of Al2O3 dispersed in crystal grain boundaries or crystal grains of partially-stabilized ZrO2.
摘要:
A solid carbide milling cutter has a substrate of hard metal and a multi-layer coating deposited at least to surface regions that contact a workpiece during a milling operation. The multi-layer coating includes a single-layer or a multi-layer functional layer deposited directly on the substrate surface and a single-layer or a multi-layer covering layer deposited on the functional layer. The functional layer has one or more layers of TixAl1-xN with 0.3≦x≦0.55. The covering layer has one or more layers of ZrN. The functional layer and the covering layer are deposited by HIPIMS, wherein during the deposition of the functional layer power pulses are applied to each sputtering target consisting of material to be deposited, which power pulses transfer an amount of energy to each sputtering target that exceeds a maximum power density in the pulse of ≧500 W/cm2.
摘要:
A milling cutter is composed of a tool body having an approximately cylindrical or disk-like shape and a plurality of edge portions provided on at least an outer peripheral portion of one end of the tool body at predetermined intervals along a circumferential direction. The edge portion has a major cutting edge and a minor cutting edge that perform an operation of cutting a workpiece, the major cutting edge is positioned outside the minor cutting edge in a radial direction, and the minor cutting edge has a cutting edge angle that is an angle with respect to a plane orthogonal to a center axis of the tool body and set so as to be an elevation angle open outward in the radial direction. When surface machining is performed on a workpiece with the milling cutter, a high degree of machined surface accuracy equivalent to that obtained by grinding is obtained.
摘要:
In a pilot hole of a workpiece made of a difficult-to-cut cast iron, a cutting tool having a leading end to which a cutting insert is attached is inserted to cut the surface of the wall of the pilot hole. At this time, the cutting tool rotates about an axis (α) and also revolves about another axis (β), so that contouring is performed on the workpiece by the tool. The cutting insert is formed of a sintered body having a CBN content of not less than 85% by volume, and the cutting insert has a thermal conductivity of not less than 100 W/(mK).