Abstract:
Provided are an oil pan (20) which has an annular recess portion (52) facing an outer circumferential edge of a spherical concave portion (36) throughout a whole circumference; and a cover (21) which is constituted in a tubular shape, of which one axial end portion is rotatably supported by a part adjacent to a radially inner side of the annular recess portion (52), and of which an axially opposite end portion is rotatably supported by a part of a shaft-equipped spherical seat (18) on the one axial end side.
Abstract:
The present invention relates to a hubless one-piece wheel comprising: a rim; and a disc integrally formed at the rim and formed by low-pressure casting, wherein the disc is a hubless type including a plurality of spokes and a space at the center of the rim. One side of said each spoke is integrally formed at the rim, and a lug hole is formed in the other side of said each spoke for coupling the wheel to a vehicle body. The plurality of spokes are radially arranged inside the rim, and each of the other sides of the spoke locates in the inner center portion of the rim being separated by the space.
Abstract:
A drive plate of an electromagnetic-fan clutch comprises: a body of the drive plate provided with magnetic-insulation air holes, connection ribs, and magnetic conductive layers. The magnetic-insulation air holes and the magnetic conductive layers are arranged alternatively along a radial direction of the body of the drive plate. A friction-increasing groove is opened on the magnetic conductive layer. The thickness of the magnetic insulation air holes and the thickness of the connection ribs are less than the thickness of the magnetic conductive layers. Six connection ribs are distributed uniformly between the magnetic conductive layers, and the connection ribs at two sides of the magnetic conductive layer are distributed along the radial direction of the body of the drive plate at an interval of 30 degrees. A drive plate through hole is opened in the body of the drive plate, and accommodation walls are disposed on the magnetic conductive layers.
Abstract:
A flow formed part includes a first end, a second end, and a side wall extending therebetween. A reinforcing member is disposed around the second end. The side wall has a profile formed along an inner surface of the side wall. The profile is adapted to be substantially burr free after windows are formed in the sidewall. A method of making a flow formed part includes the steps of disposing a preform on a tailstock, providing a plurality of rollers adjacent the tailstock, providing a mandrel having an outer surface including a plurality of alternating channels and protuberances, and causing the rollers to press the preform against the outer surface of the mandrel.
Abstract:
An inner punch (11), an outer punch (12), and a die (13) are disposed on the same center axis (10). The outer punch (12) is disposed so as to be apart from the inner punch (11) in a radial direction perpendicular to the center axis (10) by a first space S1 which is larger than a plate thickness T of a cup longitudinal wall portion (A2). Further, an inner peripheral surface of the outer punch (12) has, on its die (13) side, a punch shoulder R portion (12A) widening as it goes toward the die (13). A cup bottom portion (A15) is sandwiched by the inner punch (11) and the die (13) while an outer peripheral surface of the inner punch (11) and an inner peripheral surface of the cup longitudinal wall portion (A2) are apart from each other by a second space S2, and drawing to radially reduce the cup longitudinal wall portion (A2) is performed by pushing the cup longitudinal wall portion (A2) toward the outer peripheral surface of the inner punch (11) by the outer punch (12) while making the outer punch (12) abut on the cup longitudinal wall portion (A2) from the punch shoulder portion (12A), whereby a surplus material is made to flow into a cup shoulder portion (A1) to thicken the cup shoulder portion (A1).
Abstract:
A synchronizer ring for a synchronization unit of a manual transmission has a ring axis and is formed of a ring-shaped sheet-metal cone with a substantially constant sheet thickness. The ring-shaped sheet-metal cone has a cone-shaped radial outer side and an opposite radial inner side with a cone-shaped friction surface, wherein on its radial outer side the sheet-metal cone includes an integrally molded centering collar for radially centering the synchronizer ring relative to a synchronizer hub of the synchronization unit. The sheet-metal cone is deformed in the region of the centering collar and includes a first sheet portion with a residual thickness reduced as compared to the sheet thickness and axially adjacent a second sheet portion with a collar thickness which at least corresponds to the sheet thickness. The residual thickness of the sheet-metal cone is substantially constant in the first sheet portion.
Abstract:
A drive plate of an electromagnetic-fan clutch comprises: a body of the drive plate provided with magnetic-insulation air holes, connection ribs, and magnetic conductive layers. The magnetic-insulation air holes and the magnetic conductive layers are arranged alternatively along a radial direction of the body of the drive plate. A friction-increasing groove is opened on the magnetic conductive layer. The thickn are less than the thickness of the magnetic conductive layers. Six connection ribs are distributed uniformly between the magnetic conductive layers, and the connection ribs at two sides of the magnetic conductive layer are distributed along the radial direction of the body of the drive plate at an interval of 30 degrees. A drive plate through hole is opened in the body of the drive plate, and accommodation walls are disposed on the magnetic conductive layers.
Abstract:
A hub assembly includes a retainer housing, a retaining member, a biasing element, and an occlusion. The retainer housing includes a wheel mounting sleeve and a pin sleeve. The wheel mounting sleeve includes an axle bore configured to receive an axle. The pin sleeve has a first end and a second end. The pin sleeve includes a conduit between the first end and the second end. The first end is in fluid communication with the axle bore. The retaining member and the biasing element are in the conduit. The retaining member is configured to engage a groove in an axle. The biasing element is configured to bias the retaining member towards the axle bore. The occlusion is proximate to the second end of the pin sleeve. The occlusion is configured to inhibit the retaining member from exiting the conduit at least prior to coupling the hub assembly to a wheel.
Abstract:
A hub assembly includes a retainer housing, a retaining member, a biasing element, and an occlusion. The retainer housing includes a wheel mounting sleeve and a pin sleeve. The wheel mounting sleeve includes an axle bore configured to receive an axle. The pin sleeve has a first end and a second end. The pin sleeve includes a conduit between the first end and the second end. The first end is in fluid communication with the axle bore. The retaining member and the biasing element are in the conduit. The retaining member is configured to engage a groove in an axle. The biasing element is configured to bias the retaining member towards the axle bore. The occlusion is proximate to the second end of the pin sleeve. The occlusion is configured to inhibit the retaining member from exiting the conduit at least prior to coupling the hub assembly to a wheel.
Abstract:
A method of manufacturing a rotor for an electric motor that includes producing a generally flat metal strip, bending one section of the strip relative to another section, and rolling the strip to form a cup-shaped shell.